A Short Introduction to Scala

Otfried Cheong

February 22, 2018

1 Running Scala

Like Python, Scala can be executed interactively, or
using a Scala script. To execute Scala interactively,
just call scala from the command line. You can
then type commands interactively, and they will be
executed immediately:

Welcome to Scala version 2.8.1.final.
scala> println("Hello World")

Hello World

scala> println("This is fun")

This is fun

This is a good way to get to know a new program-
ming language and to experiment with different
types of data.

In most cases, however, you will want to write a
script, consisting of Scala functions and statements
to be executed. For example, we can create a file
forl.scala with the following contents:

def square(n : Int) {
println(n + "\t: " + n * n)

}

for (i <- 1 to 10)
square (i)

We can run this script with the command
scala forl.scala.

We will see later that there is a third way to exe-
cute Scala programs, namely to create one or more
files that are compiled using the Scala compiler.
The advantage is that such a compiled programs
starts much faster.

2 Syntax

Comments in Scala look like in Java and C: Every-
thing after a double-slash // up to the end of the
line is a comment. A long comment that continues
over several lines can be written by enclosing it in
/* and */.

Programming languages allow you to group to-
gether statements into blocks. For instance, the

body of a function, or the body of a while-loop
is a block. In Python, this so-called block structure
is indicated using indentation. Python is very much
an exception: in nearly all programming languages,
indentation, and in fact any white space, does not
matter at all. In Scala, like in Java and C, block
structure is indicated using braces: { and }. For
example, a typical while-loop may look like this:

var i = 0

while (i <= 10) {
printf("%3d: %d\n", i, i * i)
i+=1

In Java and C, all statements have to be termi-
nated by a semicolon ;. In Scala, this semicolon can
nearly always be omitted when the statement ends
at the end of the line. If you want to put several
statements on the same line, you have to separate
them using semicolons:

val s = "hello"; println(s)

The precise rule for line endings is the following;:
A line ending is considered to terminate a statement
(like a semicolon) unless

e the line ends with a word or operator that is
not legal as the end of a statement (like an infix
operator or a period), or

e the next line starts with a word that cannot
start a new statement, or

e the line ends while inside parenthesis (...) or
brackets [...].

3 Dynamic and static typing

Every piece of data handled by a Scala program is
an object. Every object has a type. The type of an
object determines what we can do with the object.
Examples of objects are numbers, strings, files, and
digital images.

A variable is a name assigned to an object during
the execution of a program. The object currently
assigned to a name is called the value of the name
or variable.

In dynamically typed programming languages
like Python, the same name can be assigned to all
kinds of different objects:

This is Python!

m = 17 # int
m = "seventeen" # str
m = 17.0 # float

This is flexible, and makes it easy to quickly write
some code. It also makes it easy to make mistakes,
though. If you assign an object of the incorrect
type, you only find out during the execution of the
program that something doesn’t work—you get a
runtime error.

Scala is a statically typed language. This means
that a variable can only be assigned to objects of
one fixed type, the type of the variable:

var m : Int = 17

m = 18 // ok

m = "seventeen" // error!
m = 18.0 // error!

The advantage of a statically typed language is
that the compiler can catch type errors during the
compilation, before the program is even run. A
good compiler can also generate more efficient code
for a statically type language, as the type of objects
is already known during the compilation. Consider
the following Python function:

This is Python!
def test(a, b):
print(a + b)

The + operator here could mean integer addition,
float addition, string concatenation, or list concate-
nation, depending on the type of the parameters a
and b. The code created for this function must look
at the types of the arguments and determine which
method to call. Now consider the following Scala
function:

def test(a : Int, b :
println(a + b)
}

Int) {

Here it is clear to the compiler that the + opera-
tor means integer addition, and so the code for the
function can immediately add the two numbers.

Other statically typed languages are Java, C, and
C++. One disadvantage of statically typed lan-
guages is that one has to write type names every-
where, leading to code that is much more verbose
than code in, say, Python. Indeed, in languages like
Java or C, the programmer has to write down the
type for every variable she uses:

/* This is C */
int m = 17;
float f = 17.0;

Scala makes our life easier and our code shorter
by using type inference. If Scala can detect what
the type of a variable name should be, then we do
not need to indicate the type:

scala> var m : Int = 17 // ok

m: Int = 17

scala> var n = 18 // also ok!
n: Int = 18

scala> var £ = 19.5

f: Double = 19.5
scala> var h = "Hello World"
h: java.lang.String = Hello World

Note how the interactive Scala interpreter tells you
what the type of the name is even though we have
not indicated it at all. When you are not sure if it
is okay to omit the type of a name, you can always
write it.

4 val variables and var variables

Scala has two different kinds of variables: val vari-
ables and var variables. val stands for value, and
a val variable can never change its value. Once
you have defined it, its value will always remain
the same:

val m = 17

m = 18 // error!

A var variable, on the other hand, can change its
value as often as you want:

var n = 17
n = 18

// ok

So why are val variables useful? Because they
make it easier to understand and to discuss a pro-
gram. When you see a val variable defined some-
where in a large function, you know that this vari-
able will always have exactly the same value. If the
programmer had used a var variable instead, you
would have to carefully go through the code to find
out if the value changes somewhere.

It is considered good style in Scala to use val
variables as much as possible.

5 Some basic data types

The most important basic types you will need first
are:

Int An integer in the range —23! to 23! — 1.

Boolean Either true or false (be careful: dif-
ferent from Python, in Scala these are written
with small letters).

Double A floating-point representation of a real
number.

Char A single character. To create a Char object,
write a character enclosed in single quotation
marks, like A’. Scala supports Unicode char-
acters, so a Char object can also be a Hangul
syllable.

String A sequence of Char. To create a String
object, write a string enclosed in double quo-
tation marks. Scala also supports the triple-
quote syntax from Python to create long
strings possibly containing new-line characters.

You will sometimes see that Scala indicates the type
of a string as java.lang.String. Since Scala runs
using the Java virtual machine and can use Java li-
braries, Scala uses Java strings for compatibility.
We can just write String to indicate the string
type.

Special characters can be placed in Char and
String literals using a backslash. For instance, \n
is a new-line character, \t a tabulator, \’ and \"
are single and double quotes, and \\ is a backslash
character. (Inside triple-quote strings, the back-
slash is not interpreted like this!)

A list of important String-methods is in Ap-
pendix A.

Sometimes we want to use integers larger than
the maximal number allowed by the Int type. In
that case, we can use the type Long, which cov-
ers the range 2793 to 263 — 1. To create a Long
object, write a number followed by L, like 123L.
(If you need even larger integers, you can use the
type BigInt, which represents arbitrarily large in-
tegers. But BigInt is much slower.)

For completeness, the other basic types in Scala
are Byte, Short, and Float. Don’t use them unless
you know what you are doing.

You can convert objects between the basic types
by using their conversion methods:

scala> 98.toChar

resl: Char = b

scala> ’c’.toDouble

res2: Double = 99.0

scala> ’c’.toString

res3: java.lang.String = c
scala> 98.55.tolInt

res4: Int = 98

6 Operators

Scala’s numerical operators are +, -, /, and %. Like
in Python 2, Java, and C, the division operators /
and % perform an integer division if both operands
are integer objects. Note that there is no power
operator in Scala (you can use the math.pow library
function to do exponentiation).

You can use the shortcuts +=, -=, etc.

You can compare numbers or strings using ==,
I=, <, > <= and >=.

The boolean operators are ! for not, && for and,
and || for or, as in C and Java. (These some-
what strange operators were invented for C in the
early 1970s, and have somehow survived into mod-
ern programming languages.) Like in Python, Java,
and C, these operators only evaluate their right
hand operand when the result is not already known
from the value of the left hand operand.

Sooner or later, you may meet the bitwise op-
erators: &, |, =, 7, <<, >> and >>>. They work
on the bit-representation of integers. (A common
mistake is to try to use ~ for exponentiation—it
does something completely different, namely a log-
ical exclusive-or.) Don’t use these operators unless
you know what you are doing.

The equality and inequality operators == and !=
can be used for objects of any type, even to compare
objects of different type.

One of the great features of Scala is that you can
define your own operators in a very flexible way. It
is easy to abuse this feature, though, and we will
not use it until later in the course.

In Scala, the mathematical constants and func-
tions are methods of the package math, the equiva-
lent of the Python math module. For instance:

scala> val pi = math.Pi

pi: Double = 3.141592653589793
scala> val t = math.sin(pi/6)

t: Double = 0.49999999999999994
scala> math.sin(pi/4)

resl: Double = 0.7071067811865475
scala> math.sqrt(2.0)/2

res2: Double = 0.7071067811865476

If you don’t like the long function names, you can
import some of the functions:

scala> import math.sin

import math.sin

scala> sin(math.Pi/4)

resl: Double = 0.7071067811865475

Here, we imported only the sin-function. We could
also import several functions at once:

scala> import math.{Pi,sin,cos,sqrt}
import math.{Pi, sin, cos, sqrt}
scala> sin(Pi/4)

resl: Double = 0.7071067811865475
scala> sqrt(2.0)/2

res2: Double = 0.7071067811865476

You can even import everything in the math-
package using this syntax:

scala> import math._

But note that unlike in Python, it is not neces-
sary to write an import-statement to use the math-
package!

7 Writing functions

Scala function definitions look very much like math-
ematical function definitions. For instance, in
mathematics we would define a function f as fol-
lows

f:ZXZ—7Z, fla,b)=a+b

In Scala, this function would be written like this

scala> def f(a:Int, b:Int) : Int = a + b
f: (a: Int,b: Int)Int
scala> f(3, 9)

resl: Int = 12

You have to write the name of each parameter
type for a Scala function. The result type is ac-
tually optional—you can try to omit it, and see if
the Scala compiler can figure it out. I recommend
always writing the result type until you have more
experience in Scala programming. Including the re-
sult type also makes your program easier to read.

Like in Python, every Scala function returns a
value. A function that does not need to return any-
thing will return the special value (), the only ob-
ject of the special type Unit, similar to the special
value None in Python.

So a function that returns nothing useful could
be written like this:

def greet(name : String) : Unit = {
println("Hello " + name)

}

Since this case is common, Scala provides a special
shorthand notation for it:

def greet(name : String) {
println("Hello " + name)

}

So we omit both the result type and the equals sign.

The parameters of a function are val variables,
and so it is not allowed to change their value inside
the function. This is different from Python, Java,
and C. So the following is illegal:

Note that we have indicated the type of each pa-
rameter of the function as well as the type of the
result.

The body of the function is a block of statements.
A block can either be a single expression as in func-
tion f above, or it consists of several statements
surrounded by curly braces:

def g(a: Int, b : Int) : Int = {
val m = a*a - b*b
val s =a - b
m/s

}

As mentioned above, indentation has no meaning to
the Scala compiler at all. Nevertheless, you should
indent your programs to be readable!

One big difference between Scala and Python, C,
or Java is that no return statement is needed in
functions. The function automatically returns the
value of the last expression in the function body.
You can still use return statements when you want
to return from the function earlier.

def test(a: Int) {
a=a+7 // illegal!
println(a)

}

One interesting feature of Scala is that it sup-
ports parameterless functions. Consider the differ-
ent syntax of functions £1 and £2 here:

scala> def f1() { println("Hi f1") }
f1: (OUnit

scala> def f2 { println("Hi £2") }
£f2: Unit

f1 is a normal function with an empty parameter
list, so you would normally call it as £2(). However,
£2 is a parameterless function—you call it simply
as £2:

scala> f1()
Hi f1
scala> f2
Hi f2

Note that Scala is somewhat generous and allows
you to call £1 without the empty parentheses. How-
ever, calling £2 with parentheses is illegal:

scala> f1

Hi f1

scala> £2(0)

<console>:7: error: f2 of type Unit
does not take parameters

We will see later why this is actually a very useful
feature.

8 Conditional expressions

The syntax of the conditional expression is

if (pts > 80) {
s = "well done!"
} else {
s = "practice harder"

}

As in Python, the else part can be omitted:

9 While loops

Scala’s while loop looks exactly like Java’s or C’s
(and much like Python’s):

var i = 1

while (i < 10) {
println(i + "\t: " + ixi)
i+=1

Scala does not have break and continue state-
ments. (You may understand why later in the
course.)

The simple while loop above could have been
written more easily using a for loop as follows:

for (i <- 1 until 10)
println(i + "\t: " + ixi)

Here i until j includes the integers {i,i +

1,...,7—1}. Note that curly braces are not needed

since there is only one statement inside the loop.
Alternatively, you could have written

for (i <- 1 to 10)
println(i + "\t: " + ixi)

if (pts > 80) {
println("good student")
}

The then-part and the else-part are blocks, that is,
either a single statement or a sequence of state-
ments surrounded by braces. So the example above
can be abbreviated like this:

if (pts > 80)

s = "well done!"
else
s = "practice harder"

You should only do this if it makes the code easier
to read, not harder!

So far, Scala’s if statement looks exactly like in
Java or C. There is a difference though: Scala’s
if expression has a value itself, and so you can
write code like this:

val msg = if (pts > 80)
"well done"
else
"practice harder!"

You can therefore use if expressions inside other
expressions.

This time, the loop goes from 1 to 10, as i to j
includes the integers {i,i+ 1,...,5}.

10 Arrays

To store many objects of the same type, we can use
an array:

scala> val L = Array("CS109", "is",
"the", "best")
L: Array[java.lang.String] =
Array(CS109, is, the, best)
scala> L.length

resl: Int = 4

scala> L(0)

res2: java.lang.String = CS109
scala> L(3)

res3: java.lang.String = best

Note the type of L. It is not just Array,
but Array[java.lang.String]. Array is a param-
eterized type, where the type parameter indicates
the type of the objects stored inside the array.

The elements of the array can be accessed as L(0)
to L(L.length-1). Scala uses normal round paren-
theses to access the elements of an array, not square
brackets like Java, C, or Python.

An array is a consecutive block of memory that
can store a fixed number of objects. This is the

same as arrays in Java or C, but completely differ-
ent from lists in Python: You cannot append ele-
ments to an array, or change its length in any way.
(We will later meet other data structures where you
can do this.)

Above we saw how to create an array when you
already know the objects that go in the array. In
many cases you want to create an array that is ini-
tially empty:

scala> val A = new Array[Int] (100)
A: Array[Int] = Array(0, ... 0)

Here, Array[Int] indicates the type of object you
want to create, and 100 is the number of elements.
When you create an array of numbers, all elements
are initially zero. It’s different for other arrays:

scala> val B = new Array[String] (5)
B: Array[String] =
Array(null, null, null, null, null)

Here, the elements of the new array have the spe-
cial value null, similar to None in Python. This
value typically means that a variable has not been
initialized yet. Except for the basic numeric types,
a variable of any type can have the value null.

You can use a for-loop to look at the elements
of an array one-by-one:

scala> for (i <- L)
| println(i)

CS109

is

the

best

This is called “iterating over an array” and is quite
similar to the for-loop in Python.

A list of the most important array methods can
be found in Appendix B.

11 Command line arguments

When you call a Scala script from the command
line, you can add command line arguments:

scala script.scala I love CS109!

The command line arguments are available inside
the script in the array args. If script.scala looks
like this:

for (s <- args)
println(s)

then the output of the command line call above
would be this:

> scala script.scala I love CS109!
I

love

CS109!

Here is another example script, triangle.scala:

val n = args(0).toInt
for (i <- 1 ton) {
for (j <- 1 to i)
print (" *ll)
println()
}

> scala triangle.scala 3
*

*ok

*okok

> scala triangle.scala 6
*

*k

k k%

KKk ok

KKKk ok

kkokok ook

12 Tuples
Like Python, Scala supports tuples:

scala> var a = (3, 5.0)
a: (Int, Double) = (3,5.0)

Unlike in Python, the parentheses are stricly nec-
essary. Note the type: the first element of tuple a
is an Int, the second one a Double. You can assign
only tuples of the correct type to the variable a:

scala> a = (2, 7)
a: (Int, Double) = (2,7.0)
scala> a = (2.0, 7)

<console>:5: error: type mismatch;
found : Double(2.0)
required: Int

You can access the elements of a tuple as
fields _1, _2, and so on:

scala> a._1
resl: Int = 3

You can also “unpack” a tuple like in Python:

scala> val (x,y) = a
x: Int = 3

y: Double = 5.0

The parentheses around x and y are required—if
you omit them, something completely different hap-
pens (try it)!

13 Reading from the terminal

You already noticed the functions print, println,
and printf for printing to the terminal.

To read input from the terminal, there are a num-
ber of read-methods:

e readLine() reads a line and returns it as a
string (without the new-line character at the
end);

e readLine(prompt) prints a prompt and then
reads a line as above, as in this example:

val s = readLine("What do you say? ")
println("You said: " + s + "’")

e readInt() reads a line and returns it as an
integer;

e readDouble() reads a line and returns a float-
ing point number;

e readBoolean() reads a line and returns a
Boolean (“yes”, “y”, “true”, and “t” for true,
and anything else for false); and

e readChar () reads a line and returns the first
character.

For instance:

print ("How many beer? ")
val n = readInt()
printf("You ordered %d beer\n", n)
print("Are you sure? ")
if (readBoolean())
printf ("Serving J%d beer\n", n)

All the print and read methods mentioned
above are actually methods of the Console object,
but Scala makes them available as if they were
global functions because they are so common.

14 Selecting alternatives

The match expression is similar to the switch-
statement in Java and C, but really much more
powerful, as we will see later. For the moment,
you can use it to conditionally execute different ex-
pressions depending on the value of some object:

val food = args(0)

val banchan = food match {

case "rice" => "kimchi"
case "noodles" => "gakdugi"
case "pizza" => "pickles"
case "bread" => "cheese"
case _ => "huh?"

}

printf ("With %s, we recommend %s\n",

food, banchan)

Note that there is no break statement: A case ends
when the next case starts. The match expression
really is an expression and returns a value: in this
case, we assign it to a variable.

The default case is indicated by an underscore _.

A String methods

Since String is such an important class and the on-line documentation is in Java syntax, here is a list
of the most important string methods. Here, S and T are strings.

e S.length is the length of the string in characters;

e S.substring(i) returns the part of the string starting at index 1.

e S.substring(i,j) returns the part of the string starting at index i and going up to index j-1.
You can write S.slice(i, j) instead.

e S.contains(T) returns true if T is a substring of S

e S.index0f (T) returns the index of the first occurrence of the substring T in S (or -1);

S.toLowerCase and S.toUpperCase return a copy of the string with all characters converted to

lower or upper case;

.capitalize returns a new string with the first letter only converted to upper case;

.reverse returns the string backwards;

.isEmpty is the same as S.length == 0;

.nonEmpty is the same as S.length !'= O;

.startsWith(T) returns true if S starts with T;

.endsWith(T) returns true if S ends with T;

.replace(cl, c2) returns a new string with all characters c1 replaced by c2;

.replace(T1, T2) returns a new string with all occurrences of the substring T1 replaced by T2;

.trim returns a copy of the string with white space at both ends removed;

.format (arguments) returns a string where the percent-placeholders in S have been replaced by

the arguments (see example below);

S.split(T) splits the string into pieces and returns an array with the pieces. T is a regular expression

(not explained here). To split around white space, use S.split("\\s+").

e 6 6 06 o6 o o o o o []
NN NN N NN N N W

For example:

scala> val S = "CS109 is nice"

S: java.lang.String = CS109 is nice

scala> S.contains("ice")

res0: Boolean = true

scala> S.index0f ("ice")

resl: Int = 10

scala> S.index0f ("rain"

res2: Int = -1

scala> S.replace(’i’, ’#°)

res4: java.lang.String = CS109 #s n#ce

scala> S.split("\\s+")

resb: Array[java.lang.String] = Array(CS109, is, nice)
scala> S.toLowerCase

res6: java.lang.String = cs109 is nice

scala> S.toUpperCase

res7: java.lang.String = CS109 IS NICE

scala> S.substring(5)
res8: java.lang.String =
scala> S.substring(5,8)
res9: java.lang.String = " is"

scala> S.reverse

resl0: String = ecin si 901SC

scala> val F = "Y5s %3d %-3d J%g"

F: java.lang.String = %5s %3d %-3d %g
scala> F.format("cs206", 12, 3, math.Pi)
resll: String = cs206 12 3 3.14159

is nice"

B Array methods

A short list of the most useful methods of arrays:

.head the first element of the array;

.last the last element of the array;

.contains(x) tests if array contains an element equal to x;

.take (n) returns a new array that has the first n elements of A;

.drop(n) returns a new array that has the elements of A except for the first n elements;

.max, A.min, A.sum return the largest, smallest, and sum of elements in the array;

.reverse returns a new array with the elements of A in reverse order;

.sorted returns a new Array with the elements of A in sorted order;

.mkString returns a string with all elements of A concatenated together;

.mkString(sep) returns a string with all elements of A concatenated, using sep as a separator;

.mkString(start, sep, end) returns a string with all elements of A concatenated, using sep as

a separator, prefixed by start and ended by end;

A ++ B returns a new array that contains the elements of arrays A and B concatenated;

e A :+ el returns a new array that contains the element of A with the element el appended at the
back;

e ¢l +: A returns a new array that contains the element of A with the element el appended at the
front.

= e e e

=

For example:

scala> val L = Array("CS109", "is", "the", "best")

L: Array[java.lang.String] = Array(CS109, is, the, best)
scala> L.head

resO: java.lang.String
scala> L.last

resl: java.lang.String = best

scala> L.mkString

res2: String = CS109isthebest

scala> L.mkString(" ")

res3: String = CS109 is the best

scala> L.mkString("--")

res4: String = CS109--is--the--best

scala> L.mkString("<", "_", ">")

resb: String = <CS109_is_the_best>

scala> (L.min, L.max)

res6: (java.lang.String, java.lang.String) = (CS109,the)

scala> L.sorted

res7: Array[java.lang.String] = Array(CS109, best, is, the)

scala> L.reverse

res8: Arrayl[java.lang.String] Array(best, the, is, CS109)

scala> L ++ Array("course", "at", "KAIST")

res9: Array[java.lang.String] = Array(CS109, is, the, best, course, at, KAIST)
scala> L :+ "course"

resl0: Arrayl[java.lang.String] = Array(CS109, is, the, best, course)

scala> "The" +: L

resll: Array([java.lang.String] = Array(The, CS109, is, the, best)

CS109

