given sets A, B, $\mathcal C$ of n integers

are there $a \in A, b \in B, c \in C$ such that a + b + c = 0?

(we assume that we can add/subtract/compare input integers in constant time)

trivial algorithm: $O(n^3)$

well-known: $O(n^2)$

Conjecture: no $O(n^{2-\varepsilon})$ algorithm

→ 3SUM-Hardness

[Gajentaan, Overmars'95]

Equivalent Variants

- 1) given sets A, B, C of n integers are there $a \in A, b \in B, c \in C$ such that a + b + c = 0?
- 2) given sets A, B, C of n integers replace C by $\{-c \mid c \in C\}$ are there $a \in A, b \in B, c \in C$ such that a + b = c? $\Leftrightarrow a + b c = 0$
- 3) given sets A, B, C of n integers and target t replace C by $\{c t \mid c \in C\}$ are there $a \in A, b \in B, c \in C$ such that a + b + c = t? $\Leftrightarrow a + b + (c t) = 0$
- 4) given a set X of n integers are there $x, y, z \in X$ such that x + y + z = 0?

$$\uparrow$$
: set $A, B, C := X$

$$\downarrow : \mathsf{set} \ X \coloneqq \{a + 4U \mid a \in A\} \cup B \cup \{c - 4U \mid c \in C\}$$

where $A, B, C \subseteq \{-U, ..., U\}$

trivial: $O(n^3)$ well-known: $O(n^2)$

using FFT: $O(n + U \operatorname{polylog} U)$ for numbers in $\{-U, ..., U\}$

using Word RAM bit-tricks: $O(n^2 \cdot \frac{\log^2 w}{w})$, $O(n^2 \cdot \frac{(\log \log n)^2}{\log^2 n})$ (cell size $w = \Omega(\log n)$, each number fits in a cell) [Baran,Demaine,Patrascu'05]

no bit-tricks: $O(n^2 \cdot \frac{(\log \log n)^2}{\log n})$

[Gronlund,Pettie'14]

we prove a simplified version:

Thm: Without bit-tricks, 3SUM is in time $O(n^2 \cdot \frac{\text{poly log log } n}{\sqrt{\log n}})$

Outline

- 1) algorithm for small universe
- 2) quadratic algorithm
- 3) small decision tree
- 4) logfactor improvement
- 5) some 3SUM-hardness results

Algorithm for Small Numbers

 $O(n + U \operatorname{polylog} U)$ for numbers in $\{-U, ..., U\}$

add U to each number, then numbers are in $\{0, ..., 2U\}$ and we want $a \in A, b \in B, c \in C$ such that a + b + c = 3U

define polynomials $p_A(x) \coloneqq \sum_{a \in A} x^a$ and similarly $p_B(x)$, $p_C(x)$ have degree at most 2U

compute $q(x) := p_A(x) \cdot p_B(x) \cdot p_C(x) = (\sum_{a \in A} x^a)(\sum_{b \in B} x^b)(\sum_{c \in C} x^c)$

what is the coefficient of x^{3U} in q(x)? $(x^a \cdot x^b \cdot x^c = x^{a+b+c})$

it is the number of (a, b, c) summing to 3U

use efficient polynomial multiplication (via Fast Fourier Transform): polynomials of degree d can be multiplied in time O(d polylog d)

Quadratic Algorithm

given a set A of n integers are there $a, b, c \in A$ such that a + b + c = 0?

sort A in increasing order: $A = \{a_1, \dots, a_n\}$

for each $c \in A$: check whether there are $a, b \in A$ s.t. a + b + c = 0

initialize i = n, j = 1

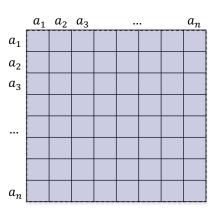
while i > 0 and $j \le n$:

if $a_i + a_j = -c$: return (a_i, a_j, c)

if $a_i + a_j > -c$: i := i - 1

if $a_i + a_i < -c$: j := j + 1

return "no solution"



Outline

- 1) algorithm for small universe
- 2) quadratic algorithm
- 3) small decision tree
- 4) logfactor improvement
- 5) some 3SUM-hardness results

Quadratic Algorithm

given a set A of n integers are there $a, b, c \in A$ such that a + b + c = 0?

sort *A* in increasing order: $A = \{a_1, ..., a_n\}$

for each $c \in A$: check whether there are $a, b \in A$ s.t. a + b + c = 0

initialize i = n, j = 1

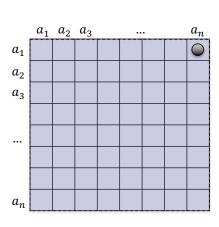
while i > 0 and $j \le n$:

if $a_i + a_j = -c$: return (a_i, a_j, c)

if $a_i + a_j > -c$: i := i - 1

if $a_i + a_j < -c$: j := j + 1

return "no solution"



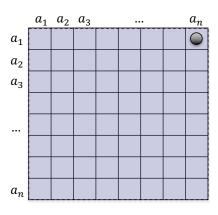
Quadratic Algorithm

given a set A of n integers are there $a, b, c \in A$ such that a + b + c = 0?

sort A in increasing order: $A = \{a_1, ..., a_n\}$

for each $c \in A$: check whether there are $a, b \in A$ s.t. a + b + c = 0

initialize i=n, j=1while i>0 and $j\leq n$: if $a_i+a_j=-c$: return (a_i,a_j,c) if $a_i+a_j>-c$: $i\coloneqq i-1$ if $a_i+a_i<-c$: $j\coloneqq j+1$



return "no solution"

Quadratic Algorithm

given a set A of n integers are there $a, b, c \in A$ such that a + b + c = 0?

sort A in increasing order: $A = \{a_1, \dots, a_n\}$

for each $c \in A$: check whether there are $a, b \in A$ s.t. a + b + c = 0

initialize i = n, j = 1

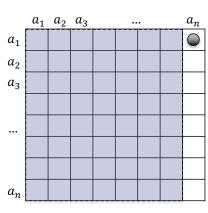
while i > 0 and $j \le n$:

if $a_i + a_j = -c$: return (a_i, a_j, c)

if $a_i + a_j > -c$: i := i - 1

if $a_i + a_j < -c$: j := j + 1

return "no solution"



Quadratic Algorithm

given a set A of n integers are there $a, b, c \in A$ such that a + b + c = 0?

sort *A* in increasing order: $A = \{a_1, ..., a_n\}$

for each $c \in A$: check whether there are $a, b \in A$ s.t. a + b + c = 0

initialize
$$i = n, j = 1$$

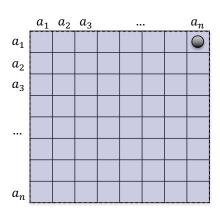
while i > 0 and $j \le n$:

if $a_i + a_j = -c$: return (a_i, a_j, c)

if $a_i + a_i > -c$: i := i - 1

if $a_i + a_j < -c$: j := j + 1

return "no solution"



Quadratic Algorithm

given a set A of n integers are there $a, b, c \in A$ such that a + b + c = 0?

sort *A* in increasing order: $A = \{a_1, ..., a_n\}$

for each $c \in A$: check whether there are $a, b \in A$ s.t. a + b + c = 0

initialize i = n, j = 1

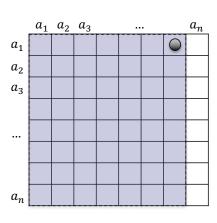
while i > 0 and $j \le n$:

if $a_i + a_j = -c$: return (a_i, a_j, c)

if $a_i + a_j > -c$: i := i - 1

if $a_i + a_i < -c$: j := j + 1

return "no solution"



Quadratic Algorithm

given a set A of n integers are there $a, b, c \in A$ such that a + b + c = 0?

sort A in increasing order: $A = \{a_1, ..., a_n\}$

for each $c \in A$: check whether there are $a, b \in A$ s.t. a + b + c = 0

initialize i = n, j = 1

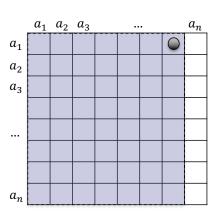
while i > 0 and $j \le n$:

if $a_i + a_i = -c$: return (a_i, a_i, c)

if $a_i + a_i > -c$: i = i - 1

if $a_i + a_j < -c$: j := j + 1

return "no solution"



Quadratic Algorithm

given a set A of n integers are there $a, b, c \in A$ such that a + b + c = 0?

sort *A* in increasing order: $A = \{a_1, ..., a_n\}$

for each $c \in A$: check whether there are $a, b \in A$ s.t. a + b + c = 0

initialize i = n, j = 1

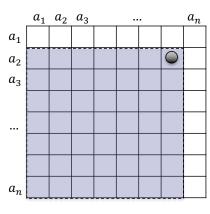
while i > 0 and $j \le n$:

if $a_i + a_i = -c$: return (a_i, a_i, c)

if $a_i + a_i > -c$: i := i - 1

if $a_i + a_j < -c$: j := j + 1

return "no solution"



Quadratic Algorithm

given a set A of n integers are there $a, b, c \in A$ such that a + b + c = 0?

sort *A* in increasing order: $A = \{a_1, ..., a_n\}$

for each $c \in A$: check whether there are $a, b \in A$ s.t. a + b + c = 0

initialize
$$i = n, j = 1$$

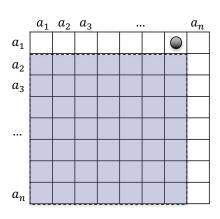
while i > 0 and $j \le n$:

if $a_i + a_j = -c$: return (a_i, a_j, c)

if $a_i + a_i > -c$: i = i - 1

if $a_i + a_j < -c$: j := j + 1

return "no solution"



Quadratic Algorithm

given a set A of n integers are there $a, b, c \in A$ such that a + b + c = 0?

sort A in increasing order: $A = \{a_1, \dots, a_n\}$

for each $c \in A$: check whether there are $a, b \in A$ s.t. a + b + c = 0

initialize
$$i = n, j = 1$$

while i > 0 and $j \le n$:

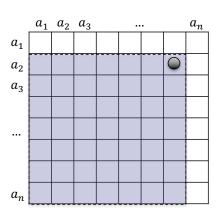
if $a_i + a_i = -c$: return (a_i, a_i, c)

if $a_i + a_j > -c$: i := i - 1

otherwise: j := j + 1

return "no solution"

time O(n) per $c \in A$ time $O(n^2)$ overall



Outline

Decision Tree Complexity

- 1) algorithm for small universe
- 2) quadratic algorithm
- 3) small decision tree
- 4) logfactor improvement
- 5) some 3SUM-hardness results

Thm:

3SUM has a decision tree of depth $O(n^{3/2} \log n)$

Decision Tree Complexity

(0)

problem P on input $x_1, ..., x_n$

Decision Tree:

each **inner node** is a **comparison**: $x_i \le x_j$

more generally any linear combination: $\sum_i \alpha_i x_i \ge 0$

outgoing edges are labeled 1/0 = true/false

all instances reaching the same **leaf** have the same result $P(x_1, ..., x_n)$

decision tree complexity of P = minimal depth of any decision tree for P

yields a **lower bound for running time** of any algorithm (that uses only comparisons, no bit-tricks)

where you have seen this:

Thm: Any decision tree for Sorting n numbers has depth $\Omega(n \log n)$

Thm: Any comparison-based Sorting algorithm takes time $\Omega(n \log n)$

Decision Tree Complexity

"experiment" or

"costly comparison"

alternative interpretation:

think of x_1, \dots, x_n as physical entities

we can perform **experiments**:

we may specify factors α_i

the outcome of the experiment tells us whether $\sum_i \alpha_i x_i \ge 0$

experiments are very costly, computation is cheap

what is the **minimal number of experiments** to decide $P(x_1, ..., x_n)$?

= decision tree complexity

Decision Tree Complexity

alternative interpretation II:

RAM with two types of cells: **special** and **standard** input numbers $x_1, ..., x_n$ are stored in special cells

	special	standard
Stores:	e.g. real number	$O(\log n)$ bit number
Operations:	add, subtract, compare (result of comparison can be stored in standard cell)	all standard arithmetic and logical operations and comparisons

usual RAM cost model: each operations takes constant time

decision tree cost model: comparisons of special numbers cost 1 all other operations are for free

Small Decision Tree

given a set A of n integers, are there $a, b, c \in A$ such that a + b + c = 0?

sort A in increasing order $O(n \log n)$ comparisons partition A into n/g groups: $A_1, ..., A_{n/g}$ write $A_i = \{a_{i,1}, ..., a_{i,g}\}$ (all elements of A_i are smaller than all elements of A_{i+1})

sort
$$D := \bigcup_{i=1}^{n/g} A_i - A_i = \{a-b \mid \exists i : a, b \in A_i\}$$

$$O(|D| \log |D|) = O(ng \log(ng))$$
 comparisons

i.e., build a list L_D containing all (i, j, k) with $i \in \{1, ..., n/g\}$, $j, k \in \{1, ..., g\}$ sorted by $a_{i,j} - a_{i,k}$ ascendingly

this preprocessing allows to compare any $a_{i,j}-a_{i,k}$ and $a_{i',j'}-a_{i',k'}$ without any costly comparisons

Fredman's trick: $a_{i,j}+a_{i',j'}\leq a_{i,k}+a_{i',k'}\iff a_{i',j'}-a_{i',k'}\leq a_{i,k}-a_{i,j}$

so this preprocessing allows to compare any $a_{i,j} + a_{i',j'}$ and $a_{i,k} + a_{i',k'}$ without any costly comparisons:

$$a_{i,j} + a_{i',j'} \leq a_{i,k} + a_{i',k'} \iff (i',j',k') \text{ appears before } (i,k,j) \text{ in } L_D$$

Decision Tree Complexity

Thm: 3SUM has a decision tree of depth $O(n^{3/2} \log n)$

why study decision tree *upper bounds*?

rules out quadratic lower bound in decision tree model

often small decision trees yield lower order improvements

Thm: Without bit-tricks, 3SUM is in time $O(n^2 \cdot \frac{\text{poly log log } n}{\sqrt{\log n}})$

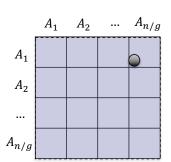
Small Decision Tree

given a set A of n integers, are there $a, b, c \in A$ such that a + b + c = 0?

sort A in increasing order $O(n \log n)$ comparisons partition A into n/g groups: $A_1, ..., A_{n/g}$ (all elements of A_i are smaller than all elements of A_{i+1}) sort $D := \bigcup_{i=1}^{n/g} A_i - A_i = \{a - b \mid \exists i : a, b \in A_i\}$ $O(|D| \log |D|) = O(ng \log(ng))$ comparisons for all i, i': sort $A_{i,i'} := A_i + A_{i'} = \{a + b \mid a \in A_i, b \in A_{i'}\}$ no comparisons!

for each $c \in A$: check whether there are $a, b \in A$ s.t. a + b + c = 0

initialize
$$i=n/g, j=1$$
 while $i>0$ and $j\leq n/g$: if $-c\in A_{i,j}$: return "solution found" if $\min(A_i)+\max(A_j)>-c$: $i\coloneqq i-1$ otherwise: $j\coloneqq j+1$ return "no solution"



Small Decision Tree

given a set A of n integers, are there $a, b, c \in A$ such that a + b + c = 0?

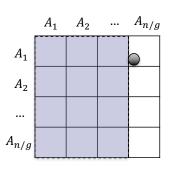
```
O(n \log n) comparisons
sort A in increasing order
partition A into n/g groups: A_1, ..., A_{n/g}
   (all elements of A_i are smaller than all elements of A_{i+1})
```

sort
$$D := \bigcup_{i=1}^{n/g} A_i - A_i = \{a - b \mid \exists i : a, b \in A_i\}$$

$$\begin{array}{c} O(|D| \log |D|) = O(ng \log(ng)) \\ \text{comparisons} \end{array}$$
for all i, i' : sort $A_{i,i'} := A_i + A_{i'} = \{a + b \mid a \in A_i, b \in A_{i'}\}$
no comparisons!

for each $c \in A$: check whether there are $a, b \in A$ s.t. a + b + c = 0

initialize
$$i=n/g, j=1$$
 while $i>0$ and $j\leq n/g$: if $-c\in A_{i,j}$: return "solution found" if $\min(A_i)+\max(A_j)>-c$: $i\coloneqq i-1$ otherwise: $j\coloneqq j+1$



no comparisons!

 $= O(n^{3/2} \log n)$ for $g := \sqrt{n}$

return "no solution"

return "no solution"

max planck institut

Small Decision Tree

given a set A of n integers, are there $a, b, c \in A$ such that a + b + c = 0?

```
O(n \log n) comparisons
sort A in increasing order
partition A into n/g groups: A_1, ..., A_{n/g}
   (all elements of A_i are smaller than all elements of A_{i+1})
                                                              O(|D|\log|D|) = O(ng\log(ng))
sort D := \bigcup_{i=1}^{n/g} A_i - A_i = \{a - b \mid \exists i : a, b \in A_i\}
                                                                                    comparisons
for all i, i': sort A_{i,i'} := A_i + A_{i'} = \{a + b \mid a \in A_i, b \in A_{i'}\}
```

for each $c \in A$: check whether there are $a, b \in A$ s.t. a + b + c = 0 n iterations

Small Decision Tree

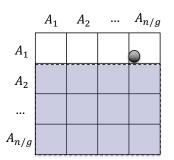
given a set A of n integers, are there $a, b, c \in A$ such that a + b + c = 0?

sort
$$A$$
 in increasing order $O(n \log n)$ comparisons partition A into n/g groups: $A_1, ..., A_{n/g}$ (all elements of A_i are smaller than all elements of A_{i+1}) sort $D \coloneqq \bigcup_{i=1}^{n/g} A_i - A_i = \{a - b \mid \exists i : a, b \in A_i\}$ $O(|D| \log |D|) = O(ng \log(ng))$ comparisons for all i, i' : sort $A_{i,i'} \coloneqq A_i + A_{i'} = \{a + b \mid a \in A_i, b \in A_{i'}\}$ no comparisons!

for each $c \in A$: check whether there are $a, b \in A$ s.t. a + b + c = 0

initialize
$$i=n/g, j=1$$

while $i>0$ and $j\leq n/g$:
if $-c\in A_{i,j}$: return "solution found"
if $\min(A_i)+\max(A_j)>-c$: $i\coloneqq i-1$
otherwise: $j\coloneqq j+1$
return "no solution"



Decision Tree Complexity

Thm: 3SUM has a decision tree of depth $O(n^{3/2} \log n)$

Thm: Without bit-tricks, 3SUM is in time $O(n^2 \cdot \frac{\text{poly} \log \log n}{\sqrt{\log n}})$

Outline

- 1) algorithm for small universe
- 2) quadratic algorithm
- 3) small decision tree
- 4) logfactor improvement
- 5) some 3SUM-hardness results

Converting Decision Tree to Algorithm

simplification:

make $A_{i,i'}$ totally ordered:

$$\begin{array}{ll} \text{replace } A_i \text{ by } \big\{ a_{i,j} \cdot (2g)^2 + j & \big| & 1 \leq j \leq g \big\} \\ \\ \text{replace } A_{i'} \text{ by } \big\{ a_{i',j} \cdot (2g)^2 + j \cdot (2g) & \big| & 1 \leq j \leq g \big\} \\ \end{array}$$

then no $a \in A_i$, $b \in A_{i'}$ and $a' \in A_i$, $b' \in A_{i'}$ sum up to the same value

and from the new $A_i + A_{i'}$ we can recover the old $A_i + A_{i'}$

Converting Decision Tree to Algorithm

given a set A of n integers, are there $a, b, c \in A$ such that a + b + c = 0?

sort A in increasing order $O(n \log n)$ comparisons partition A into n/g groups: $A_1, ..., A_{n/g}$ and time (all elements of A_i are smaller than all elements of A_{i+1})

sort
$$D \coloneqq \bigcup_{i=1}^{n/g} A_i - A_i = \{a-b \mid \exists i : a,b \in A_i\}$$

$$\begin{array}{c} O(|D| \log |D|) = O(ng \log(ng)) \\ \text{comparisons and time} \end{array}$$
 for all i,i' : sort $A_{i,i'} \coloneqq A_i + A_{i'} = \{a+b \mid a \in A_i, b \in A_{i'}\}$ no comparisons!
$$O((n/g)^2 \cdot g^2 \log(g^2)) \text{ time} \end{array}$$

for each $c \in A$: check whether there are $a, b \in A$ s.t. a + b + c = 0 n iterations

initialize
$$i=n/g, j=1$$

while $i>0$ and $j\leq n/g$:
if $-c\in A_{i,j}$: return "solution found"
if $\min(A_i)+\max(A_j)>-c$: $i\coloneqq i-1$
otherwise: $j\coloneqq j+1$

O(n/g) iterations

 $O(\log(g^2)) = O(\log n)$ comparisons and time using binary search

in total: $O(n^2 \log(g^2))$ time \odot

Converting Decision Tree to Algorithm

 $\text{consider any permutation } P = \left((\pi_1, \sigma_1), (\pi_2, \sigma_2), \dots, \left(\pi_{g^2}, \sigma_{g^2}\right)\right) \text{ of } \{1, \dots, g\} \times \{1, \dots, g\}$

P corresponds to this ordering of $A_{i,i'}$:

$$(a_{i,\pi_1} + a_{i',\sigma_1} \quad a_{i,\pi_2} + a_{i',\sigma_2} \quad \dots \quad a_{i,\pi_n} + a_{i',\sigma_n})$$

this is the correct sorted ordering of $A_{i,i'}$ if and only if:

$$a_{i,\pi_k} + a_{i',\sigma_k} < a_{i,\pi_{k+1}} + a_{i',\sigma_{k+1}}$$
 for all $1 \le k < g^2$

by Fredman's trick, this is equivalent to:

$$a_{i',\sigma_k} - a_{i',\sigma_{k+1}} < a_{i,\pi_{k+1}} - a_{i,\pi_k}$$
 for all $1 \le k < g^2$

construct vectors: $(a_{i',\sigma_k} - a_{i',\sigma_{k+1}})_{1 \le k < g^2}$

$$(a_{i,\pi_{k+1}} - a_{i,\pi_k})_{1 \le k < g^2}$$

we say that vector x dominates vector y if $x_i > y_i$ for all i

Dominance Reporting

Dominance Reporting problem:

given sets A, B of (integer-valued) vectors in \mathbb{R}^d , |A| + |B| = mreport all pairs $a \in A, b \in B$ where b dominates a

Thm:

Dominance Reporting is in time $O(m(\log m)^d + \text{outputsize})$

Converting Decision Tree to Algorithm

for all *i*, *i*': sort $A_{i,i'} := A_i + A_{i'} = \{a + b \mid a \in A_i, b \in A_{i'}\}$ write $A_i = \{a_{i,1}, ..., a_{i,n}\}$

for each permutation $P = ((\pi_1, \sigma_1), (\pi_2, \sigma_2), ..., (\pi_{a^2}, \sigma_{a^2}))$ of $\{1, ..., g\} \times \{1, ..., g\}$:

construct sets:
$$A = \{ (a_{i',\sigma_k} - a_{i',\sigma_{k+1}})_{1 \le k < g^2} \mid 1 \le i' \le n/g \}$$

$$B = \{ (a_{i,\pi_{k+1}} - a_{i,\pi_k})_{1 \le k < g^2} \mid 1 \le i \le n/g \}$$

solve Dominance Reporting on A, B time $O(m (\log m)^d + \text{outputsize})$

for each reported pair (i, i'):

the sorted ordering of $A_{i,i'}$ is given by P:

$$(a_{i,\pi_1} + a_{i',\sigma_1} \quad a_{i,\pi_2} + a_{i',\sigma_2} \quad \dots \quad a_{i,\pi_n} + a_{i',\sigma_n})$$

time for sorting all $A_{i,i'}$: $O\left((g^2)! \cdot (n/g)(\log n/g)^{g^2} + (n/g)^2\right) = O\left((n/g)^2\right)$

setting $g = 0.1 \cdot \sqrt{\log n / \log \log n}$

$$(g^2)! \le (g^2)^{g^2} \le (\log n)^{g^2} \le (\log n)^{(0.01 \log n)/\log \log n} = n^{0.01}$$

Converting Decision Tree to Algorithm

for all
$$i,i'$$
: sort $A_{i,i'} \coloneqq A_i + A_{i'} = \{a+b \mid a \in A_i, b \in A_{i'}\}$ write $A_i = \{a_{i,1}, ..., a_{i,g}\}$ for each permutation $P = \left((\pi_1, \sigma_1), (\pi_2, \sigma_2), ..., (\pi_{g^2}, \sigma_{g^2})\right)$ of $\{1, ..., g\} \times \{1, ..., g\}$: construct sets: $A = \{(a_{i',\sigma_k} - a_{i',\sigma_{k+1}})_{1 \le k < g^2} \mid 1 \le i' \le n/g\}$ $B = \{(a_{i,\pi_{k+1}} - a_{i,\pi_k})_{1 \le k < g^2} \mid 1 \le i \le n/g\}$ solve Dominance Reporting on A, B time $O(m (\log m)^d + \text{outputsize})$ for each reported pair (i, i') : the sorted ordering of $A_{i,i'}$ is given by P : $(a_{i,\pi_1} + a_{i',\sigma_1} - a_{i,\pi_2} + a_{i',\sigma_2} - ... - a_{i,\pi_n} + a_{i',\sigma_n})$ time for sorting all $A_{i,i'}$: $O\left((g^2)! \cdot (n/g)(\log n/g)^{g^2} + (n/g)^2\right)$

 $(q^2)!$ iterations

for each of dimension q^2 outputsize $(n/g)^{2}$ n/g groups

Converting Decision Tree to Algorithm

vectors have

given a set A of n integers, are there $a, b, c \in A$ such that a + b + c = 0?

one vector

sort A in increasing order and time partition A into n/g groups: $A_1, ..., A_{n/q}$ (all elements of A_i are smaller than all elements of A_{i+1}) $\operatorname{sort} D \coloneqq \bigcup_{i=1}^{n/g} A_i - A_i = \{a-b \mid \exists i : a,b \in A_i\} \qquad \underbrace{O(|D| \log |D|)}_{O(D|B)} = \underbrace{O(ng \log(ng))}_{O(D|B)}$ comparisons and time for all i, i': sort $A_{i,i'} := A_i + A_{i'} = \{a + b \mid a \in A_i, b \in A_{i'}\}$ no comparisons! $O((n/q)^2 \cdot q^2 \log(q^2))$ time

for each $c \in A$: check whether there are $a, b \in A$ s.t. a + b + c = 0 *n* iterations

initialize i = n/g, j = 1

while i > 0 and $j \le n/g$:

O(n/g) iterations

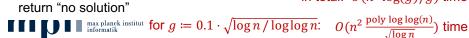
total

 $O(n \log n)$ comparisons

if $-c \in A_{i,j}$: return "solution found" if $min(A_i) + max(A_i) > -c$: i = i - 1 $O(\log(g^2)) = O(\log n)$ comparisons and time using binary search

otherwise: j := j + 1

in total: $O(n^2 \log(a)/a)$ time



Decision Tree Complexity

Thm: 3SUM has a decision tree of depth $O(n^{3/2} \log n)$

Thm: Without bit-tricks, 3SUM is in time $O(n^2 \cdot \frac{\text{poly log log } n}{\sqrt{\log n}})$

Dominance Reporting

Dominance Reporting problem:

given sets A,B of (integer-valued) vectors in \mathbb{R}^d , |A|+|B|=m report all pairs $a\in A,b\in B$ where b dominates a

Thm: Dominance Reporting is in time $O(m (\log m)^d + \text{outputsize})$

assume all coordinates to be different

if d=0: report all pairs $A\times B$ $T_d(m) \leq 2T_d(m/2) + T_{d-1}(m) + m$ otherwise:

find median x of d-th coordinates of all points in $A \cup B$ - time O(m)

$$A_S := \{a \in A \mid a_d < x\} \text{ and } A_L := A \setminus A_S$$

$$B_S := \{b \in B \mid b_d < x\} \text{ and } B_L := B \setminus B_S$$

recursively solve $(A_L, B_L), (A_S, B_S)$, and (A_S, B_L)

remove *d*-th coordinates!

Dominance Reporting

Dominance Reporting problem:

given sets A,B of (integer-valued) vectors in \mathbb{R}^d , |A|+|B|=m report all pairs $a\in A,b\in B$ where b dominates a

Thm: Dominance Reporting is in time $O(m (\log m)^d + \text{outputsize})$

deciding whether there is a dominating pair (a, b) is OV-hard so we do not expect an $O(\operatorname{poly}(d) \, m^{2-\varepsilon})$ algorithm

OV is in time $O(2^d m)$ the theorem "generalizes" this OV-algorithm to Dominance Reporting

Dominance Reporting

$$T_d(m) \le 2T_d(m/2) + T_{d-1}(m) + m$$

Excluding cost of output: $T_0(m) = T_d(1) = 0$

Inductively prove that: $T_d(m) \le m (\log 2m)^d - m$

$$\begin{split} T_d(m) &\leq 2 \left(\frac{m}{2} \left(\log m \right)^d - \frac{m}{2} \right) + \left(m \left(\log 2m \right)^{d-1} - m \right) + m \\ &= m \left((\log 2m) - 1 \right)^d + m \left(\log 2m \right)^{d-1} - m \\ &= m \left(\log 2m \right)^d (1 - 1/\log 2m)^d + m \left(\log 2m \right)^{d-1} - m \\ &\leq m \left(\log 2m \right)^d (1 - 1/\log 2m) + m \left(\log 2m \right)^{d-1} - m \\ &= m \left(\log 2m \right)^d - m \end{split}$$

Dominance Reporting

Dominance Reporting problem:

given sets A,B of (integer-valued) vectors in \mathbb{R}^d , |A|+|B|=m report all pairs $a\in A,b\in B$ where b dominates a

Thm: Dominance Reporting is in time $O(m (\log m)^d + \text{outputsize})$

this finishes the proof of:

Thm: Without bit-tricks, 3SUM is in time $O(n^2 \cdot \frac{\text{poly log log } n}{\sqrt{\log n}})$

