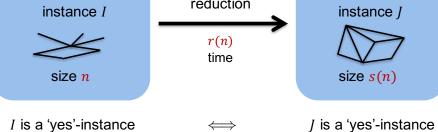
Reminder: Relations = Reductions

Reminder: Relations = Reductions

transfer hardness of one problem to another one by reductions

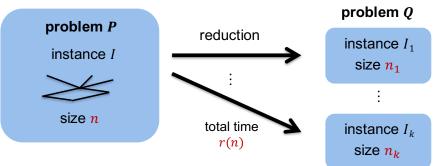
problem P
instance I
reduction
instance I



- t(n) algorithm for Q implies a r(n) + t(s(n)) algorithm for P
- if *P* has no r(n) + t(s(n)) algorithm then *Q* has no t(n) algorithm I = I = I = I = I = I = Imax planck institut

Subcubic Reduction

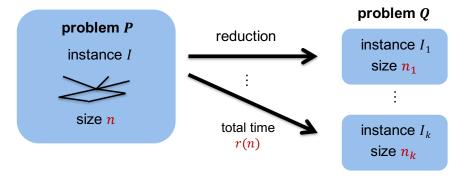
A **subcubic reduction** from P to Q is an algorithm *A* for *P* with **oracle** access to *Q* s.t.:



Properties:

max planck institut

for any instance *I*, algorithm *A*(*I*) correctly solves problem *P* on *I A* runs in time $r(n) = O(n^{3-\gamma})$ for some $\gamma > 0$ for any $\varepsilon > 0$ there is a $\delta > 0$ s.t. $\sum_{i=1}^{k} n_i^{3-\varepsilon} \le n^{3-\delta}$



max planck institut

Subcubic Reduction

A **subcubic reduction** from P to Q is an algorithm *A* for *P* with **oracle** access to *Q* with:

A subcubic reduction implies:

If *Q* has an $O(n^{3-\alpha})$ algorithm for some $\alpha > 0$, then *P* has an $O(n^{3-\beta})$ algorithm for some $\beta > 0$

Properties:

for any instance *I*, algorithm *A*(*I*) correctly solves problem *P* on *I A* runs in time $r(n) = O(n^{3-\gamma})$ for some $\gamma > 0$ for any $\varepsilon > 0$ there is a $\delta > 0$ s.t. $\sum_{i=1}^{k} n_i^{3-\varepsilon} \le n^{3-\delta}$

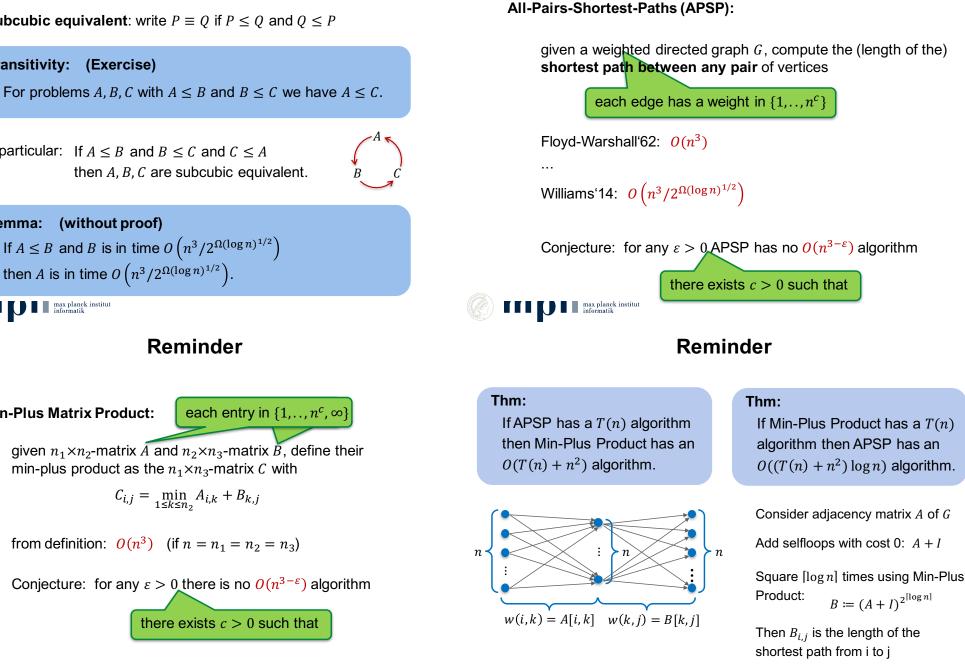
similar: subquadratic/subquartic reductions

Subcubic Reduction

subcubic reduction: write $P \leq Q$

Transitivity: (Exercise)

subcubic equivalent: write $P \equiv 0$ if $P \leq 0$ and $0 \leq P$



In particular: If $A \leq B$ and $B \leq C$ and $C \leq A$ then A, B, C are subcubic equivalent.

Lemma: (without proof) If $A \leq B$ and B is in time $O\left(n^3/2^{\Omega(\log n)^{1/2}}\right)$ then A is in time $O\left(n^3/2^{\Omega(\log n)^{1/2}}\right)$.

max planck institut informatik

Reminder

Min-Plus Matrix Product:

given $n_1 \times n_2$ -matrix A and $n_2 \times n_3$ -matrix B, define their min-plus product as the $n_1 \times n_3$ -matrix C with

$$C_{i,j} = \min_{1 \le k \le n_2} A_{i,k} + B_{k,j}$$

from definition: $O(n^3)$ (if $n = n_1 = n_2 = n_3$)

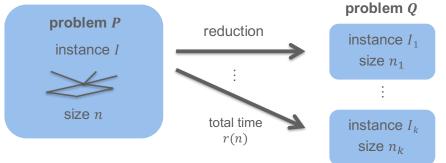
Conjecture: for any $\varepsilon > 0$ there is no $O(n^{3-\varepsilon})$ algorithm

there exists c > 0 such that

Subcubic Reduction

A subcubic reduction from P to Q is

an algorithm A for P with **oracle** access to Q with:



Properties:

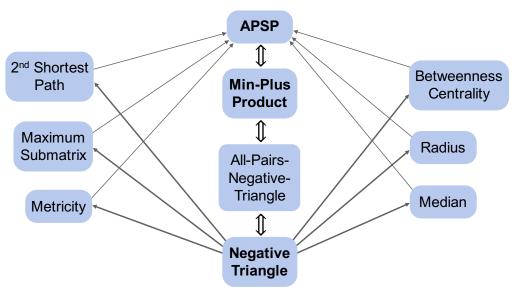
for any instance I, algorithm A(I) correctly solves problem P on I

A runs in time $r(n) = O(n^{3-\gamma})$ for some $\gamma > 0$

for any $\varepsilon > 0$ there is a $\delta > 0$ s.t. $\sum_{i=1}^{k} n_i^{3-\varepsilon} \le n^{3-\delta}$

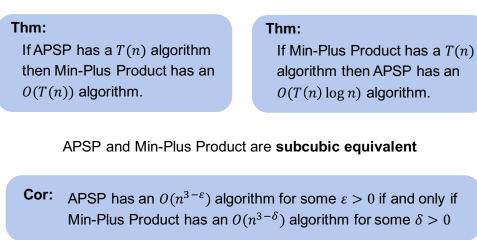
max planck institut

Subcubic Equivalences



[Vassilevska-Williams,Williams'10] [Abboud,Grandoni,Vassilevska-Williams'15]

Subcubic Equivalences



Cor: Min-Plus Product is in time $O\left(n^3/2^{\Omega(\log n)^{1/2}}\right)$

max planck institut

Triangle Problems

Negative Triangle

each edge has a weight in $\{-n^c, ..., n^c\}$

Given a weighted directed graph G

Decide whether there are vertices *i*, *j*, *k* such that

w(j,i) + w(i,k) + w(k,j) < 0

from definition: $O(n^3)$

no $O(n^{3-\varepsilon})$ algorithm known (which works for all c > 0)

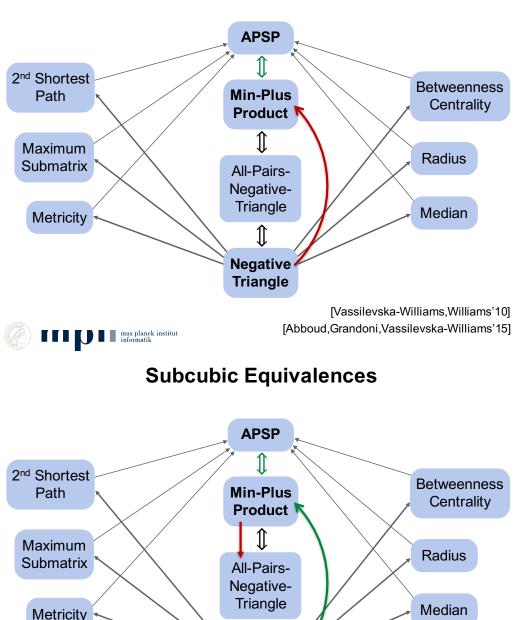
Intermediate problem:

max planck institut informatik

All-Pairs-Negative-Triangle

Given a weighted directed graph *G* with vertex set $V = I \cup J \cup K$ Decide **for every** $i \in I, j \in J$ whether there is a vertex $k \in K$ s.t. w(j,i) + w(i,k) + w(k,j) < 0

Subcubic Equivalences

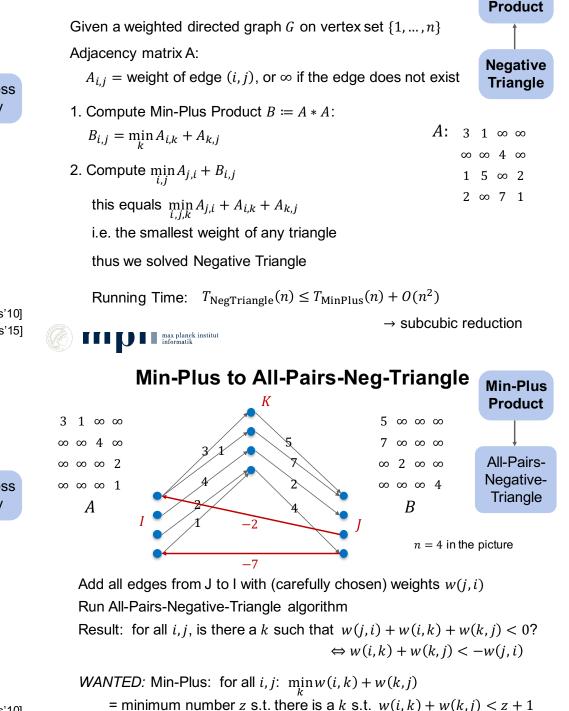


€

Negative Triangle

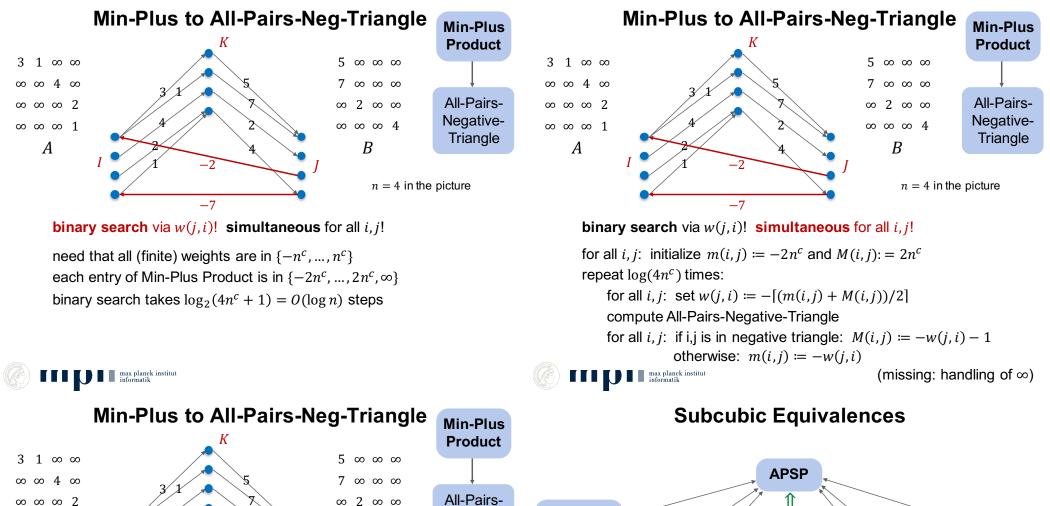
Neg-Triangle to Min-Plus-Product

Min-Plus



TITUT $a_{\text{max planck institut}}$ **binary search** via w(j,i)! **simultaneous** for all i,j!

[Vassilevska-Williams,Williams'10] [Abboud,Grandoni,Vassilevska-Williams'15]



2nd Shortest

Path

Maximum

Submatrix

Metricity

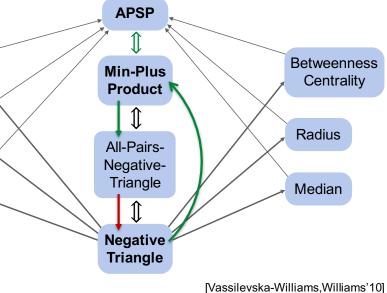
max planck institut

T(n) algorithm for All-Pairs-Neg-Triangle yields

 $O(T(n) \log n)$ algorithm for Min-Plus Product

max planck institut

In particular: $O(n^{3-\varepsilon})$ algorithm for All-Pairs-Neg-Triangle for some $\varepsilon > 0$ implies $O(n^{3-\varepsilon})$ algorithm for Min-Plus Product for some $\varepsilon > 0$



All-Pairs-Neg-Triangle to Neg-Triangle

Negative Triangle Given graph *G* Decide whether there are vertices *i*, *j*, *k* such that w(j,i) + w(i,k) + w(k,j) < 0

All-Pairs-Negative-Triangle Given graph *G* with vertex set $V = I \cup J \cup K$ Decide for every $i \in I, j \in J$ whether there is a vertex $k \in K$ such that w(j,i) + w(i,k) + w(k,j) < 0

Split I, J, K into n/s parts of size s:

 $I_1, \dots, I_{n/s}, J_1, \dots, J_{n/s}, K_1, \dots, K_{n/s}$

For each of the $(n/s)^3$ triples (I_x, J_y, K_z) : consider graph $G[I_x \cup J_y \cup K_z]$

max planck institut

All-Pairs-Neg-Triangle to Neg-Triangle

Find a negative triangle (i, j, k) in $G[I_x \cup J_y \cup K_z]$

How to **find** a negative triangle if we can only **decide** whether one exists?

Partition I_x into $I_x^{(1)}, I_x^{(2)}, J_y$ into $J_y^{(1)}, J_y^{(2)}, K_z$ into $K_z^{(1)}, K_z^{(2)}$

Since $G[I_x \cup J_y \cup K_z]$ contains a negative triangle,

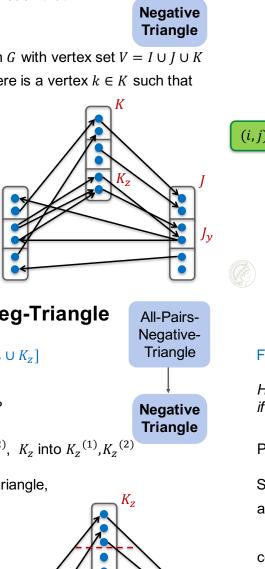
at least one of the 2³ subgraphs

 $G[I_x^{(a)} \cup J_y^{(b)} \cup K_z^{(c)}]$

contains a negative triangle

Decide for each such subgraph whether it contains a negative triangle

Recursively find a triangle in one subgraph



All-Pairs-

Negative-

Triangle

All-Pairs-Neg-Triangle to Neg-Triangle

Initialize *C* as $n \times n$ all-zeroes matrix

For each of the $(n/s)^3$ triples of parts (I_x, J_y, K_z) : While $G[I_x \cup J_y \cup K_z]$ contains a negative triangle: Find a negative triangle (i, j, k) in $G[I_x \cup J_y \cup K_z]$ Set C[i, j] := 1Set $w(i, j) := \infty$ (*i, j*) is in no more negative triangles \checkmark guaranteed termination: can set $\leq n^2$ weights to ∞

correctness:
 if (i, j) is in negative triangle,
 we will find one
 max planck institut

All-Pairs-Neg-Triangle to Neg-Triangle

Find a negative triangle (i, j, k) in $G[I_x \cup J_y \cup K_z]$

How to **find** a negative triangle if we can only **decide** whether one exists?

Partition I_x into $I_x^{(1)}, I_x^{(2)}, J_y$ into $J_y^{(1)}, J_y^{(2)}, K_z$ into $K_z^{(1)}, K_z^{(2)}$

Since $G[I_x \cup J_y \cup K_z]$ contains a negative triangle, at least one of the 2³ subgraphs

 $G[I_x^{(a)} \cup J_y^{(b)} \cup K_z^{(c)}]$ contains a negative triangle

Decide for each such subgraph whether it contains a negative triangle

Recursively find a triangle in one subgraph

max planck institut

Running Time: $T_{\text{FindNegTriangle}}(n) \leq$

 $2^3 \cdot T_{\text{DecideNegTriangle}}(n)$

All-Pairs-

Negative-

Triangle

All-Pairs-

Negative-

Triangle

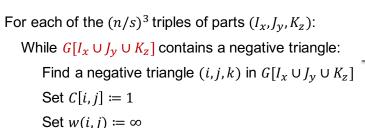
Negative

Triangle

+ $T_{\text{FindNegTriangle}}(n/2)$ = $O(T_{\text{DecideNegTriangle}}(n))$

All-Pairs-Neg-Triangle to Neg-Triangle

Initialize C as $n \times n$ all-zeroes matrix



Running Time:

 $(*) = O(T_{\text{FindNegTriangle}}(s)) = O(T_{\text{DecideNegTriangle}}(s))$ Total time: $((\#triples) + (\#triangles found)) \cdot (*)$ $\leq ((n/s)^3 + n^2) \cdot T_{\text{DecideNegTriangle}}(s)$ Set $s = n^{1/3}$ and assume $T_{\text{DecideNegTriangle}}(n) = O(n^{3-\varepsilon})$ Total time: $O(n^2 \cdot n^{1-\varepsilon/3}) = O(n^{3-\varepsilon/3})$ max planck institut

Radius

G is a weighted directed graph d(u, v) is the distance from u to v in G

Radius: $\min \max d(u, v)$

u is in some sense the *most central vertex*

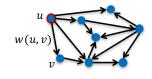
Radius -APSP

> compute all pairwise distances, then evaluate definition of radius in time $O(n^2)$

 \rightarrow subcubic reduction

max planck institut

$$\Rightarrow$$
 Radius is in time $O\left(n^3/2^{\Omega(\log n)^{1/2}}\right)$

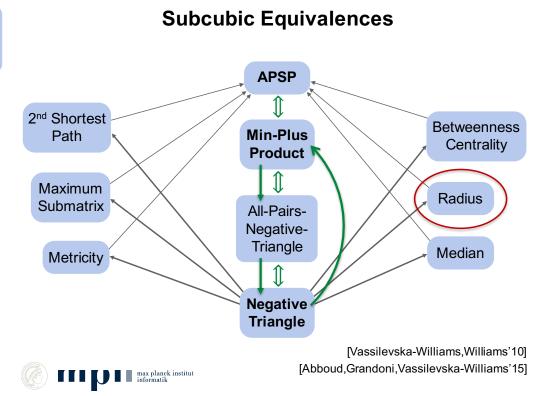


All-Pairs-Negative-Triangle

Negative

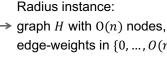
Triangle

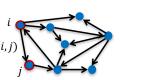
(*)



Negative Triangle to Radius

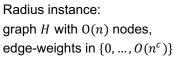
Negative Triangle instance: graph G with n nodes, edge-weights in $\{-n^c, ..., n^c\}$

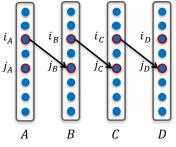




1) Make four layers with n nodes 2) For any edge (i, j): Add (i_A, j_B) , $(i_B, j_C), (i_C, j_D)$ with weight M + w(i, j)

max planck institut





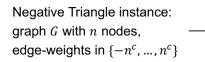
 $M := 3n^{c}$

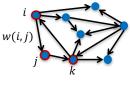
Radius

Negative

Triangle

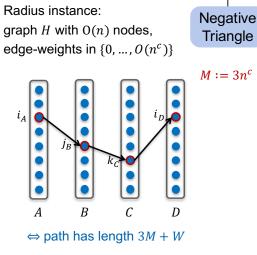
Negative Triangle to Radius





(i, j, k) has weight W

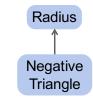
1) Make four layers with n nodes 2) For any edge (i, j): Add (i_A, j_B) , $(i_B, j_C), (i_C, j_D)$ with weight M + w(i, j)



 $\rightarrow \exists i_A, j_B, k_C, i_D$ -path of length $\leq 3M - 1$?

max planck institut informatik

Negative Triangle to Radius



Radius

Claim: Radius of *H* is $\leq 3M - 1$ iff there is a negative triangle in G

Proof:

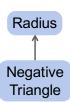
If there is a negative triangle (i, j, k) then i_A is in distance $\leq 3M - 1$ to i_D (by (2)), and in distance $\leq 3M - 1$ to any other vertex (by (3)),

so the radius is $\leq \max d(i_A, v) \leq 3M - 1$

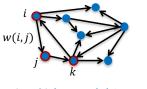
If there is no negative triangle (i, j, k):

Any node *u* of the form $i_B/i_C/i_D$ cannot reach *A*, so it has $\max d(u, v) = \infty$ Any i_A is in distance $\geq 3M$ to i_D , since there is no i_A, j_B, k_C, i_D -path of length \leq 3M - 1 (note that the edges added in (3) also do not help) Hence, for all u, $\max d(u, v) \ge 3M$, and thus the radius is at least 3M

Negative Triangle to Radius



> graph H with O(n) nodes,



Negative Triangle instance:

edge-weights in $\{-n^c, ..., n^c\}$

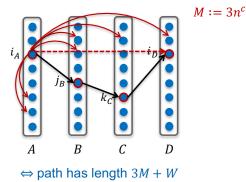
graph G with n nodes,

(i, j, k) has weight W

1) Make four layers with n nodes 2) For any edge (i, j): Add (i_A, j_B) , $(i_B, j_C), (i_C, j_D)$ with weight M + w(i, j)3) Add edges of weight 3M - 1 from any i_A to all nodes except i_D (and i_A)

Radius: min max d(u, v)max planck institut

Radius instance: edge-weights in $\{0, \dots, O(n^c)\}$



 $\rightarrow \exists i_A, j_B, k_C, i_D$ -path of length $\leq 3M - 1$?

Claim: Radius of *H* is $\leq 3M - 1$ iff there is a negative triangle in G

