$$(x_1 \vee \neg x_2 \vee x_4) \wedge (x_3 \vee \neg x_3) \wedge (\neg x_1 \vee x_2 \vee x_3 \vee x_4)$$

**CNF-SAT:** boolean *variables*  $x_1, ..., x_N$  = variable or negated variable clauses  $C_1, ..., C_M$  are an OR over *literals* decide whether an assignment of  $x_1, ..., x_N$  satisfies ALL clauses unbounded *clause width* = number of literals per clause

**k-SAT:** clause width bounded by k thus  $M \le N^k$ 







# **Satisfiability Hypotheses**





# **Satisfiability Hypotheses**



best-known algorithm for CNF-SAT: [Calabro,Impagliazzo,Paturi'06]  $O(2^{(1-x)N}) \text{ where } x = \Theta(1/\log(M/N))$ 





# **Satisfiability Hypotheses**



#### **SETH-Hardness for OV**



#### **Reminder: Definition of Reductions**

transfer hardness of one problem to another one by reductions



t(n) algorithm for Q implies a r(n) + t(s(n)) algorithm for P

if P has no r(n) + t(s(n)) algorithm then Q has no t(n) algorithm



#### **SETH-Hardness for OV**



#### **Proof:**

$$U := \text{assignments of } x_1, \dots, x_{N/2}$$
  $V := \text{assignments of } x_{N/2+1}, \dots, x_N$   $\cong \{1, \dots, n\}$   $\cong \{1, \dots, n\}$ 

we say that partial assignment u satisfies clause C

iff  $\exists i$ :  $x_i$  is set to **true** in u and  $x_i$  appears **unnegated** in C or  $\exists i$ :  $x_i$  is set to **false** in u and  $x_i$  appears **negated** in C

in this case we write: 
$$sat(u,C) = 1$$
 otherwise:  $sat(u,C) = 0$  
$$unsat(u,C) \\ = 1 - sat(u,C)$$
 
$$A = \{ \left(unsat(u,C_1), \dots, unsat(u,C_M)\right) \mid u \in U \} \}$$
 
$$B = \{ \left(unsat(v,C_1), \dots, unsat(v,C_M)\right) \mid v \in V \} \}$$

#### **SETH-Hardness for OV**



#### **Proof:**



# **III. Longest Common Subsequence**

#### **SETH-Hardness for k-OV**



#### k-OrthogonalVectors:

*Input:* Sets 
$$A_1, ..., A_k \subseteq \{0,1\}^d$$
 of size  $n$ 

Task: Decide whether there are 
$$a^{(1)} \in A_1, ..., a^{(k)} \in A_k$$
  
such that  $\forall 1 \le i \le d$ :  $\prod_{i=1}^k a^{(j)}_i = 0$ 

$$\Leftrightarrow \forall 1 \le i \le d \colon \exists j \colon a^{(j)}_{i} = 0$$

Thm: k-OV has no  $O(n^{k-\varepsilon})$  algorithm unless SETH fails.

[Williams,Patrascu'10]



# Longest Common Subsequence (LCS)

given strings x, y of length  $n \ge m$ , compute longest string z that is a subsequence of both x and y

match

natural dynamic program  $O(n^2)$ 

$$y[1]$$
 $x[1]$  ...  $x[n]$ 
 $T[i,j] = LCS(x[1..i], y[1..j])$ 



write LCS(x, y) = |z|

if 
$$x[i] = y[j]$$
:  
 $T[i, j] = \max\{T[i, j], T[i - 1, j - 1] + 1\}$ 

 $O(n^2/\log^2 n)$ 

logfactor improvement:

[Masek,Paterson'80]



#### **OV-Hardness Result**



$$O(n^{2-\varepsilon}\operatorname{poly}(d))$$
 algorithm  $\leftarrow O(n^{2-\varepsilon})$  algorithm

Thm: [B.,Künnemann'15+ Abboud,Backurs,V-Williams'15] has no  $O(n^{2-\varepsilon})$  algorithm unless the OV-Hypothesis fails.



## **Proof: Vector Gadgets**

**OV:** Given  $A, B \subseteq \{0,1\}^d$  of size n each Are there  $a \in A, b \in B$  such that  $\forall i$ :  $a_i \cdot b_i = 0$ 

we want to simulate **orthogonality** of  $a \in A, b \in B$  in the picture: d = 4 concatenate  $a_1^A, ..., a_d^A$ , padded with a new symbol 2 length 4d

$$VG(a) := a_1^A 2 ... 2 a_2^A 2 ... 2 a_3^A 2 ... 2 a_4^A$$
  
 $VG(b) := b_1^B 2 ... 2 b_2^B 2 ... 2 b_3^B 2 ... 2 b_4^B$ 

- no LCS matches symbols in  $a_i{}^A$  with symbols in  $b_j{}^B$  where  $i \neq j$ 

# **Proof: Coordinate Gadgets**

**OV:** Given  $A, B \subseteq \{0,1\}^d$  of size n each Are there  $a \in A, b \in B$  such that  $\forall i$ :  $a_i \cdot b_i = 0$ 

we want to simulate the **coordinates**  $\{0,1\}$  and the behavior of  $a_i \cdot b_i$ 



replace  $a_i$  by  $a_i^A$  and  $b_i$  by  $b_i^B$ 

 $LCS(a_i^A, b_i^B)$  can be written as  $f(a_i \cdot b_i)$ , with f(0) > f(1)



## **Proof: Vector Gadgets**

**OV:** Given  $A, B \subseteq \{0,1\}^d$  of size n each Are there  $a \in A, b \in B$  such that  $\forall i$ :  $a_i \cdot b_i = 0$ 

we want to simulate **orthogonality** of  $a \in A, b \in B$  concatenate  $a_1{}^A, ..., a_d{}^A$ , padded with a new symbol 2 length 4d

$$VG(a) := a_1^A 2 ... 2 a_2^A 2 ... 2 a_3^A 2 ... 2 a_4^A$$
  
 $VG(b) := b_1^B 2 ... 2 b_2^B 2 ... 2 b_3^B 2 ... 2 b_4^B$ 

- no LCS matches symbols in  $a_i{}^A$  with symbols in  $b_j{}^B$  where  $i \neq j$  assume otherwise then we could match  $\leq (d-2)4d$  symbols 2 and  $\leq 3d$  symbols 0/1 but  $LCS(VG(a),VG(b)) \geq (d-1)4d > (d-2)4d + 3d$ 





# **Proof: Vector Gadgets**

**OV:** Given  $A, B \subseteq \{0,1\}^d$  of size n each Are there  $a \in A, b \in B$  such that  $\forall i$ :  $a_i \cdot b_i = 0$ 

we want to simulate **orthogonality** of  $a \in A, b \in B$  concatenate  $a_1{}^A, \dots, a_d{}^A$ , padded with a new symbol 2

$$VG(a) := a_1{}^A \ 2 \dots 2 \ a_2{}^A \ 2 \dots 2 \ a_3{}^A \ 2 \dots 2 \ a_4{}^A$$
  
 $VG(b) := b_1{}^B \ 2 \dots 2 \ b_2{}^B \ 2 \dots 2 \ b_3{}^B \ 2 \dots 2 \ b_4{}^B$ 

- no LCS matches symbols in  $a_i^A$  with symbols in  $b_j^B$  where  $i \neq j$
- some LCS matches all 2's



# **Proof: Normalized Vectors Gadgets**

**OV:** Given  $A, B \subseteq \{0,1\}^d$  of size n each Are there  $a \in A, b \in B$  such that  $\forall i$ :  $a_i \cdot b_i = 0$ 

add a (d + 1)-st coordinate: still holds:  $\exists C$ :

$$a_{d+1} \coloneqq 0$$
  $LCS(VG(a), VG(b)) = C + 2$  if  $a \perp b$   $LCS(VG(a), VG(b)) \le C$  otherwise

this does not change  $a \perp b$ 

define vector:

$$s := (0, ..., 0, 1) \in \{0, 1\}^{d+1}$$
  $LCS(VG(s), VG(b)) = C$ 

aim for  $\max\{LCS(VG(a),VG(b)),LCS(VG(s),VG(b))\}$  this takes only 2 values, depending on whether  $a\perp b$ 

# **Proof: Vector Gadgets**

**OV:** Given  $A, B \subseteq \{0,1\}^d$  of size n each Are there  $a \in A, b \in B$  such that  $\forall i$ :  $a_i \cdot b_i = 0$ 

we want to simulate **orthogonality** of  $a \in A, b \in B$  concatenate  $a_1^A, ..., a_d^A$ , padded with a new symbol 2

$$VG(a) := a_1^A 2 ... 2 a_2^A 2 ... 2 a_3^A 2 ... 2 a_4^A$$
  
 $VG(b) := b_1^B 2 ... 2 b_2^B 2 ... 2 b_3^B 2 ... 2 b_4^B$ 

$$-LCS\big(VG(a),VG(b)\big) = (d-1)4d + \sum_{i=1}^{d} LCS(a_i{}^A,b_i{}^B) = f(a_i \cdot b_i)$$
#2's
$$LCS\big(VG(a),VG(b)\big) = C+2 \quad \text{if } a \perp b$$

$$LCS\big(VG(a),VG(b)\big) \leq C \quad \text{otherwise}$$
where  $C = (d-1)4d + 2d - 2$ 



# **Proof: Normalized Vectors Gadgets**

**OV:** Given  $A, B \subseteq \{0,1\}^d$  of size n each Are there  $a \in A, b \in B$  such that  $\forall i$ :  $a_i \cdot b_i = 0$ 



$$LCS(VG'(a),VG'(b)) = 10d^2 + \max\{LCS\big(VG(a),VG(b)\big),LCS\big(VG(s),VG(b)\big)\}$$

$$LCS(VG'(a), VG'(b)) = \begin{cases} C' + 2 & \text{if } a \perp b \\ C' & \text{otherwise} \end{cases}$$





# **Proof: OR-Gadget**

**OV:** Given  $A, B \subseteq \{0,1\}^d$  of size n each

Are there  $a \in A, b \in B$  such that  $\forall i$ :  $a_i \cdot b_i = 0$ 

fresh symbol 3, want to construct:

in the picture: n = 3

 $VG(A[1]) \; 3 \; ... \; 3 \; VG(A[2]) \; 3 \; ... \; 3 \; VG(A[3]) \; 3 \; ... \; 3 \; VG(A[1]) \; 3 \; ... \; 3 \; VG(A[2]) \; 3 \; ... \; 3 \; VG(A[3])$ 

 $3 \dots \dots \dots 3 \ VG(B[1]) \ 3 \dots 3 \ VG(B[2]) \ 3 \dots 3 \ VG(B[3]) \ 3 \dots \dots \dots \dots \dots 3$ 

length  $100d^2$ 

length  $100d^2 \cdot 2n$ 



# **Proof: OR-Gadget**

**OV:** Given  $A, B \subseteq \{0,1\}^d$  of size n each

Are there  $a \in A, b \in B$  such that  $\forall i$ :  $a_i \cdot b_i = 0$ 

fresh symbol 3, want to construct:

in the picture: n = 3

VG(A[1]) 3 ... 3 VG(A[2]) 3 ... 3 VG(A[3]) 3 ... 3 VG(A[1]) 3 ... 3 VG(A[2]) 3 ... 3 VG(A[3])

 $3 \dots \dots 3 VG(B[1]) 3 \dots 3 VG(B[2]) 3 \dots 3 VG(B[3]) 3 \dots 3 \dots 3 VG(B[3])$ 

if an orthogonal pair exists then  $LCS \ge (2n-1)100d^2 + nC + 2$ 

**Claim:** otherwise:  $LCS \le (2n-1)100d^2 + nC$ 

this finishes the proof: ✓ equivalent to OV instance

✓ length  $O(d^2n)$ 

# **Proof: OR-Gadget**

**OV:** Given  $A, B \subseteq \{0,1\}^d$  of size n each Are there  $a \in A, b \in B$  such that  $\forall i$ :  $a_i \cdot b_i = 0$ 

fresh symbol 3, want to construct:

in the picture: n = 3

VG(A[1]) 3 ... 3 VG(A[2]) 3 ... 3 VG(A[3]) 3 ... 3 VG(A[1]) 3 ... 3 VG(A[2]) 3 ... 3 VG(A[3])

 $3 \dots \dots 3 VG(B[1]) 3 \dots 3 VG(B[2]) 3 \dots 3 VG(B[3]) 3 \dots 3 \dots 3 VG(B[3])$ 

can align VG(B[j]) with  $VG(A[\Delta + j \mod n])$  for any offset  $\Delta$ 

 $LCS \ge (2n-1)100d^2 + \max_{\Delta} \sum_{j=1}^{n} LCS(VG(A[\Delta + j \bmod n]), VG(B[j]))$ 

#3's in upper string

maximize over offset

need normalization!

If there is an orthogonal pair, some offset  $\Delta$  aligns this  $\sqrt{r}$ , and we get



$$LCS \ge (2n - 1)100d^2 + nC + 2$$

### **OV-Hardness Result**



 $O(n^{2-\varepsilon}\operatorname{poly}(d))$  algorithm  $\leftarrow O(n^{2-\varepsilon})$  algorithm

Thm: [B.,Künnemann'15+ Longest Common Subsequence Abboud,Backurs,V-Williams'15] has no  $O(n^{2-\varepsilon})$  algorithm unless the OV-Hypothesis fails.





#### **Proof of Claim**

OV: Given  $A, B \subseteq \{0,1\}^d$  of size n each Are there  $a \in A, b \in B$  such that  $\forall i$ :  $a_i \cdot b_i = 0$ 

**Claim:** if no orthogonal pair exists:  $LCS \le (2n-1)100d^2 + nC$ 

VG(A[1]) 3 ... 3 VG(A[2]) 3 ... 3 VG(A[3]) 3 ... 3 VG(A[1]) 3 ... 3 VG(A[2]) 3 ... 3 VG(A[3])



consider how an LCS matches the VG(B[j])

- no crossings



#### **Extensions**

#### similar problems:

edit distance

dynamic time warping

...

#### alphabet size:

longest common subsequence and edit distance are even hard on binary strings, i.e., alphabet {0,1}

longest common subsequence of **k** strings takes time  $\Omega(n^{k-\varepsilon})$ 

#### **Proof of Claim**

OV: Given  $A, B \subseteq \{0,1\}^d$  of size n each Are there  $a \in A, b \in B$  such that  $\forall i$ :  $a_i \cdot b_i = 0$ 

**Claim:** if no orthogonal pair exists:  $LCS \le (2n-1)100d^2 + nC$