I. SETH

i p B0 i
Satisfiability Hypotheses

P = NP: k-SAT not in time poly(N) Vk>3or3k >3

M

ETH (Exponential Time Hypothesis)
k-SAT not in time 200"

[Impagliazzo,Paturi,Zane’01]

Vk >3or3dk >3

SETH (Strong Exponential Time Hypothesis)
ve>0:3k >3: k-SAT notin time 0(201-9M)

best-known algorithm for k-SAT: 0(2(1=¢") where ¢, = ©(1/k)
[Paturi,Pudlak,Saks,Zane’98]

Satisfiability Problem

(.171 V —xo V .’L’4) A (1'3 V _‘.Z'g)/\
(mx1 Vo Vg V)

. = variable or
CNF-SAT: boolean variables x4, ..., xy L[negated variable]
clauses C4,...,Cy are an OR over literals

decide whether an assignment of x4, ..., xy satisfies ALL clauses

unbounded clause width
:i = number of literals per clause]

k-SAT: clause width bounded by k
thus M < N¥

LN G LR
Satisfiability Hypotheses

P #NP: k-SAT not in time poly(N) Vk >3or3k >3

fl

ETH (Exponential Time Hypothesis)
k-SAT not in time 2°(M)

[Impagliazzo,Paturi,Zane’01]

Vk >3or3dk =3

SETH (Strong Exponential Time Hypothesis)
Ve>0:3k 23: k-SAT notin time 0(2(1-9M)

“CNF-SETH’ ‘
CNF-SAT not in time 0 (poly(M) 2(1=9N)

best-known algorithm for CNF-SAT:
024Ny where x = 0(1/log(M/N))

[Calabro,Impagliazzo,Paturi’06]

l ' I I max planck institut
informatik

Satisfiability Hypotheses

P # NP:

k-SAT not in time poly(N) Vk > 3or3k >3

N

ETH (Exponential Time Hypothesis)
k-SAT not in time 20"

1M

[Impagliazzo,Paturi,Zane’01]

Vk >3 or3dk = 3

SETH (Strong Exponential Time Hypothesis)
k-SAT not in time 0(2(1-2)

“CNF-SETH”
CNF-SAT not in time O(poly(M) 2(1-8N)

Ve > 0:3k = 3:

OV-Hypothesis
OV not in time O (poly(d) n*~¢)
(]] p L ot

SETH-Hardness for OV
CNF-SAT reduction ov
N variables - .sets A, BZ N2
time O(MZN/Z) or size n =
I EETREE in dimension d = M
0(201=¢/2N poly(M)) algorithm = 0(n*~# poly(d)) algorithm

Thm: SETH implies OVH [Willams 05]

0 (2(1~1/000gM/NDINY algorithm =
best-known algorithm for CNF-SAT!

0 (n%~1/0(0gld/logn))y glgorithm

[Lecture 3]

' l I I max planck institut
informatik

Reminder: Definition of Reductions

transfer hardness of one problem to another one by reductions

problem P problem Q
instance I reduction) instance |
time
size n size s(n)
1 is a ‘yes’-instance =] is a ‘yes’-instance

t(n) algorithm for Q implies a r(n) + t(s(n)) algorithm for P

if P has no r(n) + t(s(n)) algorithm then Q has no t(n) algorithm
IO PR

SETH-Hardness for OV

CNF-SAT ov
sets A4,B
of size n = 2N/2

in dimension d = M

reduction

N variables
M clauses time 0 (M2"/?)
Proof:
U :=assignments of x4, ..., xn/2 V :=assignments of xy /341, ..., Xy
= {1,..,n} = {1,..,n}
we say that partial assignment u satisfies clause C
iff 3i: x; is set to true in uand x; appears unnegated in C
or 3i: x; is set to false in u and x; appears negated in C

in this case we write: sat(u,C) =1 otherwise: sat(u,C) =0

unsat (u, C)
=1-sat(u,C)
i p [ot e

A= {(unsat(u,Cl),...,unsat(u, CM)) | uel}
B = {(unsat(v, C1),...,unsat(v, CM)) | veV}

SETH-Hardness for OV
CNF-SAT reduction ov
N variables .Sets A B »
M clauses time 0(M2M/?) of sizen =2

in dimension d = M

Proof:
U := assignments of x4, ..., xy/2 V :=assignments of xy /341, ..., Xy

~ (A4 hY ca hY

we sa what if we split into k parts?
iff 3 U; = assignments of x(i_1)n/k+1, - Xin/k
or Aji= {(unsat (u,Cy), ...,unsat (u, CM)) u € U;}
in this 0
unsat (u, C) A= {(unsat(u,Cl),... ,unsat(u, CM)) | ueu}
=1 -sat(u,C)

I p BB B = {(unsat(,Cy), ...,unsat(v,Cy)) |v €V }

lll. Longest Common Subsequence

SETH-Hardness for k-OV

CNF-SAT reduction k-OV
sets A4, ..., Ay

of size n = 2N/k
in dimension d = M

N variables

M clauses time 0(M2"/*)

k-OrthogonalVectors:

Input: Sets Ay, ..., Ay S {0,1}¢ of size n

Task: Decide whether there are a® € 4;,...,a® € 4,
such that vl <i <d: [[¥.;a¥; =0

evi<i<d: 3j:aP; =0

[Williams,Patrascu‘10]

Thm: .0V has no 0(n¥~¢) algorithm
unless SETH fails.

LN LR
Longest Common Subsequence (LCS)

given strings x,y of length n > m, compute longest string z thatis a
subsequence of both x and y

_ write LCS(x,y) = |z|
natural dynamic program 0 (n?)

x[1] .. x[n] a XX cad
y[1] | T\
&_,L T[i,j] = a) KaXd
LCS(x[1..i],y[1..j]
ylm]
delete in x delete in y

T[i,j] = max{T[i = 1,j1,T[i,j — 1]} logfactor improvement:

if x[i] = y[j]:
T[i,j] = max{T[i,jl,Tli—1,j—1]+1}

0(n?/ log?n)

[Masek,Paterson’80]

l ' I I max planck institut
& informatik

OV-Hardness Result

ov reduction LCS
sets 4,B c {0,1}¢ > strings x,y
of size n time 0(d*n) of length 0(d?n)
0(n?~¢poly(d)) algorithm = 0(n?~¢) algorithm

[B.,Kiinnemann’15+
Longest Common Subsequence Abboud,Backurs,V-Williams‘15]

has no 0(n?~¢) algorithm unless the OV-Hypothesis fails.

Thm:

LLN G LR
Proof: Vector Gadgets

oV: Given A,B < {0,1}¢ of size n each
Are there a € A,b € B suchthatVvi: a;-b; =0

we want to simulate orthogonality of a € A,b € B in the picture: d = 4

concatenate a;*,..., az*, padded with a new symbol 2 [jength 4d

VG(a) = alA 2.2 aZA 2.2 a3A2 2 a4_A
(|

VG(b) :=b%2..2b,°2..2b52...2b,°

- no LCS matches symbols in a;4 with symbols in b]-B where i # j

lleIL?‘f

Proof: Coordinate Gadgets

OV: Given 4,B c {0,1}¢ of size n each
Are there a € A,b € B suchthat Vi: a;-b; =0

we want to simulate the coordinates {0,1} and the behavior of a; - b;

04 := 001) 14 := 111
Cy§2
LCSZZ‘ >< ILCS=0
)
LS
08 :=011 1B := 000

replace a; by a;4 and b; by b;”

LCS(a;4,b;®) can be written as f(a; - b;), with £(0) > f(1)

LN G LR
Proof: Vector Gadgets

ov: Given A, B € {0,1}¢ of size n each
Are there a € A,b € B such that vi: a;-b; =0

we want to simulate orthogonality of a € A,b € B

concatenate a, *, .., az“, padded with a new symbol 2 [jength 4d

VG(a) i=a;42..2 a, {04 2 ... 2 a4
[el

VG(b) = b,"2..2b, | ;" 2 .2 b,"

- no LCS matches symbols in a;4 with symbols in bjB where i # j
assume otherwise
then we could match < (d —2)4d symbols 2 and < 3d symbols 0/1

but LCS(VG (), VG(b)) = (d — 1)4d > (d — 2)4d + 3d

l ' I I max planck institut
& informatik

Proof: Vector Gadgets Proof: Vector Gadgets

OV: Given 4,B c {0,1}¢ of size n each OV: Given 4,B < {0,1}¢ of size n each
Are therea € A,b € B suchthatVvi: a;-b; =0 Are therea € A,b € B suchthatVi: a;-b; =0

we want to simulate orthogonality of a € A,b € B we want to simulate orthogonality of a € A,b € B
concatenate a, 4, ..., a;4, padded with a new symbol 2 concatenate a, 4, ..., az4, padded with a new symbol 2

VG(a) :=a142..2a,42..2a342...2a,%4 VG(a) :=a142..2a,42..20a342...2a,4

| Il
VG(b) :=b%2..2b,°2..2b52...2b,° VG(b) :=b%2..2b,%2..2b52..2b,°
B

- no LCS matches symbols in a;4 with symbols in b;” where i # j -LCS(VG(a),VG()) = (d — D4d + XL, LCS(ai*, b;)
- some LCS matches all 2's W LCS(VG(@,VGM)) =C+2 falb

LeS(VG(@),VEm))YE) otherwise
where C = (d —1)4d + 2d — 2

LLE LR LN LR
Proof: Normalized Vectors Gadgets Proof: Normalized Vectors Gadgets
OV: Given 4,B < {0,1}¢ of size n each OV: Given 4,B c {0,1}¢ of size n each
Are there a € A,b € B suchthatVvi: a;-b; =0 Are there a € A,b € B such that vi: a;-b; =0
. 2
add a (d + 1)-st coordinate: still holds: 3C: new vector gadgets: gt A0
ag+1=0 LCS(VG(a),VG()) =C+2 ifalb ,
VG'(@): WG@) 4.4 VG(s) VG(a) 4..4VGE)
bgyq =1 LCS(VG(a),VG(b)) <C otherwise

this does not change a L b
VG'(b): 4..4VG(b) 4t W2 VGD) 4.4
define vector:

=0 0D eI LES(VEE), VM) = ¢ LCS(VG'(a), VG' (b)) = 10d? + max{LCS(VG(a), VG (b)), LCS(VG(s), VG(b))}

aim for max{LCS(VG(a),VG (b)), LCS(VG(s), VG (b))} C'+2 falb
c’' otherwise

LCS(VG' (), VG' (b)) = {

this takes only 2 values, depending on whether a L b

JITCIEE IO PR write VG for V6"

Proof: OR-Gadget

ov: Given A, B < {0,1}¢ of size n each
Are there a € A,b € B suchthatVi: a;-b; =0

fresh symbol 3, want to construct: in the picture: n =3

VG(A[1]) 3..3VG(A[2]) 3..3VG(A[3]) 3..3VG(A[1]) 3...3VG(A[2]) 3..3VG(A[3])

3o 3VG B[3..3VGB2D) 3 ..3VGBI3]) 3 e eve a3

length 100d2 | length 100d? - 2n |

l l I I I max planck institut
informatik

Proof: OR-Gadget

oVv: Given A, B < {0,1}¢ of size n each
Are there a € A,b € B suchthatVi: a;-b; =0

fresh symbol 3, want to construct:

- 3 3VG(A[3D) 3..3VG(A[1]) 3..3VG(A[2]) 3 .. 3-

.3VG(B[1])3..3VG(B[2])3..3VGB[RBD3..... [.5
if an orthogonal pair exists then LCS > (2n —1)100d? + nC + 2

in the picture: n =3

Claim: otherwise: LCS < (2n —1)100d? +nC

this finishes the proof: ¢ equivalent to OV instance
v length 0(d?n)
ini IJ [i e

Proof: OR-Gadget

ov: Given A, B € {0,1}¢ of size n each
Are there a € A,b € B suchthatVi: a;-b; =0

fresh symbol 3, want to construct: in the picture: n =3

3 3VGABD 3..3VG(A[1]D 3...3VG(A[2D 3 .. 3-

\IIII

3VGBAD3..3VG(B[2])3..3VG(B[3])3 ... s

can align VG(B[j]) with VG(A[A + j mod n]) for any offset A
LCS = (2n— 1)100d? + mAaxz;LlLCS(VG(A[A +j modn]),VG(B[j]))
t_'_l

| #3's in upper string | |maximize over offsetl

If there is an orthogonal pair, some offset A aligns this
in IJ [[ot e

need normalization!

, and we get
LCS > (2n —1)100d? + nC + 2

OV-Hardness Result
ov reduction LCS
sets 4,B < {0,1}¢ > strings x, y
of size n time 0 (d*n) of length 0(d?n)
0(n?~¢poly(d)) algorithm = 0(n?~¢) algorithm
Thm: [B.,Kiilnnemann’15+

Longest Common Subsequence
has no 0(n?~¢) algorithm unless the OV-Hypothesis fails.

Abboud,Backurs,V-Williams*15]

l ' I I I max planck institut
informatik

Proof of Claim

ov: Given A, B < {0,1}¢ of size n each
Are there a € A,b € B suchthatVi: a;-b; =0

Claim: if no orthogonal pair exists: LCS < (2n — 1)100d? + nC

VG(A[1]) 3..3VG(A[2]) 3..3VG(A[3]) 3..3VG(A[1]) 3..3VG(A[2]) 3..3 VG (A[3])

3 oo 3VG B[3..3VGB2D 3 ..3VGB[3]) 3 o eee a3

consider how an LCS matches the VG (B[j])

- NO crossings

l l I I I max planck institut
informatik

Extensions

similar problems:
edit distance

dynamic time warping

alphabet size:

longest common subsequence and edit distance
are even hard on binary strings, i.e., alphabet {0,1}

longest common subsequence of k strings takes time Q(nk—%)

l l I I I max planck institut
informatik

Proof of Claim

ov: Given A, B € {0,1}¢ of size n each
Are there a € A,b € B suchthatVi: a;-b; =0

Claim: if no orthogonal pair exists: LCS < (2n —1)100d? + nC

VG(AILD) 3.3 VG (A[2]) 3 ...3 VG (A[3]) BmBIVG (A[1]) 3.3 VG (A[2]) 3 ...3 VG (A[3])

NN

3 o 3VG(B[1D) 3..3VG(BI2]) 3 ..3VG(B[3]) 3 v v eve 3

non-orthogonal

if VG(B[j]) is not matched

n
LES < (2n - D100d7+)" if VG(BIJ]) is matched to one

|#3‘S in upper string I if VG(B[j]) is matched to > 1
[could match VG completely, but loose many 3‘|

