
Hard problems

given 𝑛 integers
do any three sum to 0?
conjecture: no 𝑂(𝑛'+,) algorithm

3SUM:

conjecture: no 𝑂(𝑛3+,) algorithm

given a weighted graph with 𝑛 vertices
compute the distance between any pair of vertices

APSP:

conjecture: no 𝑂(𝑛'+,) algorithm

given 𝑛 vectors in {0,1}8 (for small	𝑑)
are any two orthogonal?

OV:

conjecture: no 𝑂(2 :+, $) algorithm (SETH)

given a formula in conj. normal form on 𝑛 variables
is it satisfiable?

SAT:

Relations = Reductions

transfer hardness of one problem to another one by reductions

problem 𝑸

time
size 𝑠(𝑛)

reduction instance 𝐽

𝐼 is a ‘yes’-instance 𝐽 is a ‘yes’-instance()

problem 𝑷

size 𝑛

instance 𝐼

𝑟(𝑛)

𝑡(𝑛) algorithm for 𝑄 implies a 𝑟 𝑛 + 𝑡(𝑠 𝑛 ) algorithm for 𝑃

if 𝑃 has no 𝑟 𝑛 + 𝑡(𝑠 𝑛 ) algorithm then 𝑄 has no 𝑡(𝑛) algorithm 

Relations = Reductions

transfer hardness of one problem to another one by reductions

problem 𝑸

total time 
𝑟(𝑛)

size 𝑠:(𝑛)

reduction instance 𝐼1

𝑡(𝑛) algorithm for 𝑄 implies a 𝑟 𝑛 +	∑ 𝑡(𝑠D 𝑛 )E
DF: algorithm for 𝑃

problem 𝑷

size 𝑛

instance 𝐼

size 𝑠E(𝑛)
instance 𝐼𝑘

…

…

Showcase Results

𝑂(𝑛') SETH-hard 𝑛'+,longest common subseq.
[B.,Künnemann’15,

Abboud,Backurs,V-Williams’15]
edit distance, longest palindromic 
subsequence, Fréchet distance...

given two strings 𝑥, 𝑦 of length 𝑛, 
compute the longest string 𝑧 that 
is a subsequence of both 𝑥 and 𝑦

a b b c a d

a c d a a b d



Showcase Results

𝑂(𝑛') SETH-hard 𝑛'+,longest common subseq.
[B.,Künnemann’15,

Abboud,Backurs,V-Williams’15]
edit distance, longest palindromic 
subsequence, Fréchet distance...

we can stop searching for faster algorithms!
in this sense, conditional lower bounds replace NP-hardness

𝑂(𝑛'+,) algorithms are unlikely to exist

improvements are at least as hard as a breakthrough for SAT

Showcase Results

𝑂(𝑛') SETH-hard 𝑛'+,

bitonic TSP 𝑂(𝑛') 𝑂 𝑛	logN𝑛
[de Berg,Buchin,Jansen,Woeginger’16]

longest common subseq.
[B.,Künnemann’15,

Abboud,Backurs,V-Williams’15]
edit distance, longest palindromic 
subsequence, Fréchet distance...

longest increasing subsequence, 
matrix chain multiplication...

given 𝑛 points in the plane, 
compute a minimum tour 
connecting all points 
among all tours consisting of 
two x-monotone parts

Showcase Results

𝑂(𝑛') SETH-hard 𝑛'+,

bitonic TSP 𝑂(𝑛') 𝑂 𝑛	logN𝑛
[de Berg,Buchin,Jansen,Woeginger’16]

maximum submatrix 𝑂(𝑛3) APSP−hard 𝑛3+,

longest common subseq.
[B.,Künnemann’15,

Abboud,Backurs,V-Williams’15]
edit distance, longest palindromic 
subsequence, Fréchet distance...

longest increasing subsequence, 
matrix chain multiplication...

[Backurs,Dikkala,Tzamos’16]minimum weight triangle, 
graph centrality measures...

given matrix 𝐴 over ℤ, choose a submatrix
(consisting of consecutive rows 
and columns of 𝐴) 
maximizing the sum of all entries

-3 2 -2 0
-2 5 7 -2
1 3 -1 1
3 -2 0 0

Showcase Results

𝑂(𝑛') SETH-hard 𝑛'+,

bitonic TSP 𝑂(𝑛') 𝑂 𝑛	logN𝑛
[de Berg,Buchin,Jansen,Woeginger’16]

maximum submatrix 𝑂(𝑛3) APSP−hard 𝑛3+,

colinearity 3SUM−hard 𝑛'+,
[Gajentaan,Overmars’95]

longest common subseq.
[B.,Künnemann’15,

Abboud,Backurs,V-Williams’15]
edit distance, longest palindromic 
subsequence, Fréchet distance...

longest increasing subsequence, 
matrix chain multiplication...

given 𝑛 points in the plane, 
are any three of them on a line?

[Backurs,Dikkala,Tzamos’16]minimum weight triangle, 
graph centrality measures...

𝑂(𝑛')
motion planning, polygon containment...



Showcase Results

𝑂(𝑛') SETH-hard 𝑛'+,

bitonic TSP 𝑂(𝑛') 𝑂 𝑛	logN𝑛
[de Berg,Buchin,Jansen,Woeginger’16]

maximum submatrix 𝑂(𝑛3) APSP−hard 𝑛3+,

colinearity 3SUM−hard 𝑛'+,
[Gajentaan,Overmars’95]

longest common subseq.
[B.,Künnemann’15,

Abboud,Backurs,V-Williams’15]
edit distance, longest palindromic 
subsequence, Fréchet distance...

longest increasing subsequence, 
matrix chain multiplication...

[Backurs,Dikkala,Tzamos’16]minimum weight triangle, 
graph centrality measures...

𝑂(𝑛')
motion planning, polygon containment...

Open: optimal binary search tree 𝑂(𝑛')
knapsack 𝑂(𝑛𝑊)
many more...

Complexity Inside P

SAT 2n

EDIT n2

LCS n2

Fréchet n2

diameter n2

OV n2 Colinearity n2

Negative Triangle n3

Radius n3
3SUM-hard

APSP
equivalent

SETH-hard

classification of polynomial time problems

APSP n3

3SUM n2

problem-centric view on complexity theory

II. An Example for OV-hardness

Orthogonal Vectors Hypothesis

Sets 𝐴,𝐵 ⊆ 0,1 8 of size 𝑛

Decide whether there are 
𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵 such that 𝑎 ⊥ 𝑏

Input:

Task:

⇔[ 𝑎D \ 𝑏D = 0
8

DF:

𝐴 = { 1,1,1 , 1,1,0 ,
1,0,1 , 0,0,1 }

𝐵 = { 0,1,0 , 0,1,1 ,
1,0,1 , 1,1,1 }

⇔ for	all	1 ≤ 𝑖 ≤ 𝑑:	𝑎D = 0	or	𝑏D = 0

trivial 𝑂(𝑛'𝑑) algorithm

best known algorithm:  𝑂(𝑛'+:/e(fgh *)) where 𝑑 = 𝑐 log𝑛 [Lecture 03]

OV-Hypothesis: no 𝑂(𝑛'+,poly(𝑑)) algorithm for any 𝜀 > 0

„OV has no 𝑂(𝑛'+,) algorithm, even if 𝑑 = polylog	𝑛”



Graph Diameter Problem

An unweighted graph 𝐺 = (𝑉,𝐸)

Compute the largest distance 
between any pair of vertices

Input:

Task:

Single-source-shortest-paths:

Dijkstra’s algorithm:  𝑂 𝑚 + 𝑛 log𝑛

= max
s,t∈u

𝑑v(𝑢, 𝑣) diameter 2

Easy algorithm:

All-pairs-shortest-paths:

Dijkstra from every node: 	𝑂 𝑛 𝑚 + 𝑛 log𝑛 ≤ 𝑂(𝑛	𝑚 log 𝑛)

from this information we can compute the diameter in time 𝑂(𝑛')

OV-Hardness Result

diameter

time 𝑂(𝑑𝑛) 𝑂(𝑛) vertices

reduction
graph G

OV

of size 𝑛
sets 𝐴,𝐵 ⊆ 0,1 8

𝑂(𝑑𝑛) edges

𝑂((𝑛𝑚):+,) algorithm𝑂(𝑛'+,poly(𝑑)) algorithm ⟸

Thm: Diameter has no 𝑂((𝑛𝑚):+,) algorithm 
unless the OV-Hypothesis fails.

[Roditty,V-Williams‘13]

Proof

Proof:

1 2 d…

𝑎

i
put edge if 𝑎D = 1

𝑏

put edge if 𝑏D = 1

𝐴 𝐵

𝑎, 𝑏 not orthogonal

diameter = 3 ⇔
there exists an 
orthogonal pair

𝑑 𝑎, 𝑏 = 2 ⇔

diameter

time 𝑂(𝑑𝑛) 𝑂(𝑛) vertices

reduction
graph G

OV

of size 𝑛
sets 𝐴,𝐵 ⊆ 0,1 8

𝑂(𝑑𝑛) edges

can assume: every vector has at least one ‚1‘

Proof

Remark: Even deciding whether the diameter is ≤ 2 or ≥ 3 has 
no 𝑂((𝑛𝑚):+,) algorithm unless OVH fails.

There is no (3 '⁄ − 𝜀)-approximation for the diameter in 
time 𝑂((𝑛𝑚):+,) unless OVH fails.

diameter

time 𝑂(𝑑𝑛) 𝑂(𝑛) vertices

reduction
graph G

OV

of size 𝑛
sets 𝐴,𝐵 ⊆ 0,1 8

𝑂(𝑑𝑛) edges



III. Another Example for OV-hardness

NFA Acceptance Problem

nondeterministic finite automaton 𝐺
accepts input string 𝑠 if there is a 
walk in 𝐺 from starting state to 
some accepting state, 
labelled with 𝑠

start 1 1

0,1 0,1

string: 01011010

dynamic programming algorithm in time 𝑂( 𝑠 𝐺 ):

𝑇 𝑖 ≔ set	of	states	reachable	via	walks	labelled	with	𝑠[1. . 𝑖]

𝑇 0 ≔ {starting	state}

𝑇 𝑖 ≔ 𝑣	 	∃𝑢 ∈ 𝑇 𝑖 − 1 	and	∃	transition	𝑢 → 𝑣	labelled	𝑠 𝑖 }

OV-Hardness Result

NFA acceptance

time 𝑂(𝑑𝑛) 𝐺 = 𝑂(𝑑𝑛)

reduction
grammar 𝐺, string 𝑠

OV

of size 𝑛
sets 𝐴,𝐵 ⊆ 0,1 8

𝑠 = 𝑂(𝑑𝑛)

𝑂(( 𝑠 	|𝐺|):+,) algorithm𝑂(𝑛'+,poly(𝑑)) algorithm ⟸

Thm: NFA acceptance has no 𝑂(( 𝑠 	|𝐺|):+,)
algorithm unless OVH fails.

[Impagliazzo]

Proof

in string 𝑠:
in NFA 𝐺:

0011

= 𝑎:𝑎'…𝑎8

fix some 𝑎 ∈ 𝐴:
fix some 𝑏 ∈ 𝐵:

if 𝑏D = 1 if	𝑏D = 0

0 0 0

1

0

1

Proof:

NFA acceptance

time 𝑂(𝑑𝑛) 𝐺 = 𝑂(𝑑𝑛)

reduction
grammar 𝐺, string 𝑠

OV

of size 𝑛
sets 𝐴,𝐵 ⊆ 0,1 8

𝑠 = 𝑂(𝑑𝑛)



Proof

in string 𝑠:
in NFA 𝐺:

0011

= 𝑎:𝑎'…𝑎8

fix some 𝑎 ∈ 𝐴:
fix some 𝑏 ∈ 𝐵:

if 𝑏D = 1 if	𝑏D = 0

0 0 0

1

0

1

Proof:

NFA acceptance

time 𝑂(𝑑𝑛) 𝐺 = 𝑂(𝑑𝑛)

reduction
grammar 𝐺, string 𝑠

OV

of size 𝑛
sets 𝐴,𝐵 ⊆ 0,1 8

𝑠 = 𝑂(𝑑𝑛)

Proof

in string 𝑠: in NFA 𝐺:

fix some 𝑎 ∈ 𝐴: fix some 𝑏 ∈ 𝐵:

string 𝒔 = $1100$0110$ …$0011$

0011

(for all 𝑎 ∈ 𝐴)

NFA 𝑮: 0 0 0

1

0

1

00 0

1

0

1

(for all b ∈ 𝐵)
start

0,1, $

…

$

$

0,1, $
$

$

…

0 0 0

1

0

1

✔ equivalent to OV instance
✔ size 𝑠 = 𝐺 = 𝑂(𝑑𝑛)


