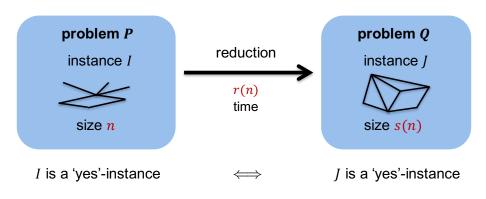
# Hard problems

# **Relations = Reductions**

transfer hardness of one problem to another one by reductions



t(n) algorithm for Q implies a r(n) + t(s(n)) algorithm for P

if P has no r(n) + t(s(n)) algorithm then Q has no t(n) algorithm

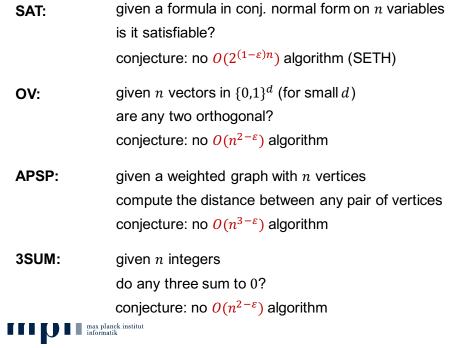
max planck institut

# **Showcase Results**

longest common subseq. $O(n^2)$ SETH-hard  $n^{2-\varepsilon}$ edit distance, longest palindromic<br/>subsequence, Fréchet distance...[B.,Künnemann'15,<br/>Abboud,Backurs,V-Williams'15]given two strings x, y of length n,a  $\bigvee$  c a d

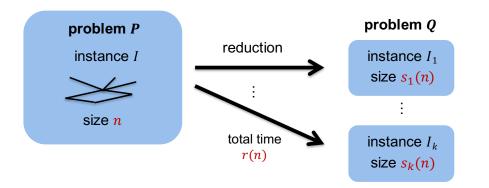
compute the **longest string** z that is a **subsequence** of both x and y





# **Relations = Reductions**

transfer hardness of one problem to another one by reductions



t(n) algorithm for Q implies a  $r(n) + \sum_{i=1}^{k} t(s_i(n))$  algorithm for P





# **Showcase Results**

# **Showcase Results**

 $0(n^2)$ longest common subseq. edit distance, longest palindromic subsequence, Fréchet distance...

SETH-hard  $n^{2-\varepsilon}$ [B.,Künnemann'15,

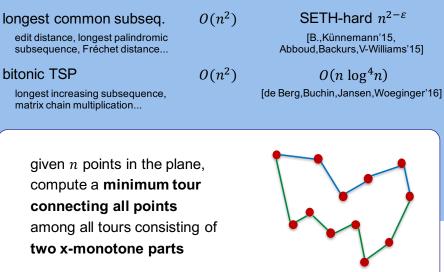
Abboud, Backurs, V-Williams'15]

#### we can stop searching for faster algorithms!

in this sense, conditional lower bounds replace NP-hardness

 $O(n^{2-\varepsilon})$  algorithms are unlikely to exist

improvements are at least as hard as a breakthrough for SAT



# max planck institut

max planck institut

# **Showcase Results**

| longest common subseq.<br>edit distance, longest palindromic<br>subsequence, Fréchet distance                                                                                                                                           | $0(n^2)$           | SET<br>[B.,I<br>Abboud,B | Künne             | eman | n'15, |       | ]      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------------------------|-------------------|------|-------|-------|--------|
| bitonic TSP<br>longest increasing subsequence,<br>matrix chain multiplication                                                                                                                                                           | 0(n <sup>2</sup> ) | (<br>[de Berg,Buch       | ) (n ]<br>nin, Ja | U    |       | ginge | er'16] |
| maximum submatrix<br>minimum weight triangle,<br>graph centrality measures                                                                                                                                                              | 0(n <sup>3</sup> ) | APS<br>[Backurs          |                   |      |       |       |        |
| given matrix A over $\mathbb{Z}$ , choose a submatrix<br>(consisting of consecutive rows<br>and columns of A) $-3$ $2$ $-2$ $0$ maximizing the sum of all entries $-3$ $2$ $-2$ $0$ $-2$ $5$ $7$ $-2$ $1$ $3$ $-1$ $1$ $3$ $-2$ $0$ $0$ |                    |                          |                   |      |       |       |        |

# **Showcase Results**

| longest common subseq.<br>edit distance, longest palindromic<br>subsequence, Fréchet distance | 0(n <sup>2</sup> ) | SETH-hard $n^{2-\varepsilon}$<br>[B.,Künnemann'15,<br>Abboud,Backurs,V-Williams'15] |
|-----------------------------------------------------------------------------------------------|--------------------|-------------------------------------------------------------------------------------|
| bitonic TSP                                                                                   | $O(n^2)$           | $O(n \log^4 n)$                                                                     |
| longest increasing subsequence, matrix chain multiplication                                   |                    | [de Berg,Buchin,Jansen,Woeginger                                                    |
| maximum submatrix                                                                             | $O(n^{3})$         | APSP-hard $n^{3-\varepsilon}$                                                       |
| minimum weight triangle,<br>graph centrality measures                                         |                    | [Backurs,Dikkala,Tzamos'16]                                                         |
| colinearity                                                                                   | $O(n^2)$           | 3SUM-hard $n^{2-\varepsilon}$                                                       |
| motion planning, polygon containmen                                                           | t                  | [Gajentaan,Overmars'95]                                                             |
| given $n$ points in the plane                                                                 | -                  | _                                                                                   |

r'16]

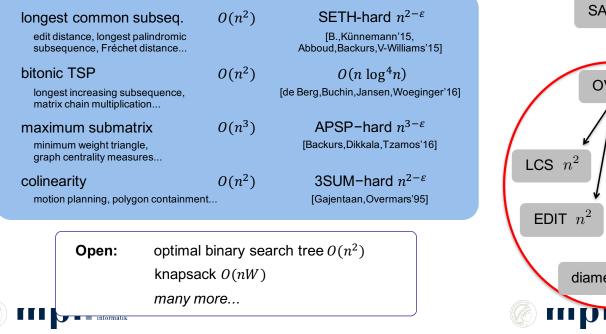
max planck institut informatik

are any three of them on a line?

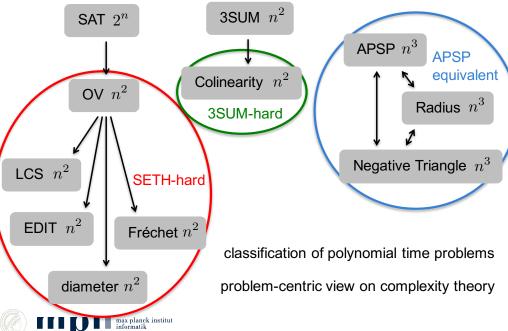
max planck institut

### **Showcase Results**

## **Complexity Inside P**



### II. An Example for OV-hardness



# **Orthogonal Vectors Hypothesis**

| Input: | Sets $A, B \subseteq \{0,1\}^d$ of size $n$                                          | $A = \{(1,1,1), (1,1,0), $     |
|--------|--------------------------------------------------------------------------------------|--------------------------------|
| Task:  | Decide whether there are                                                             | <mark>(1,0,1),</mark> (0,0,1)} |
|        | $a \in A, b \in B$ such that $a \perp b$                                             | $B = \{(0,1,0), (0,1,1), \}$   |
|        | $\Leftrightarrow \sum\nolimits_{i=1}^{d} a_i \cdot b_i = 0$                          | (1,0,1), (1,1,1)}              |
|        | $\Leftrightarrow \text{for all } 1 \leq i \leq d \colon a_i = 0 \text{ or } b_i = 0$ |                                |

trivial  $O(n^2 d)$  algorithm

max planck institut

best known algorithm:  $O(n^{2-1/O(\log c)})$  where  $d = c \log n$  [Lecture 03]

**OV-Hypothesis:** no  $O(n^{2-\varepsilon} \operatorname{poly}(d))$  algorithm for any  $\varepsilon > 0$ 

"OV has no  $O(n^{2-\varepsilon})$  algorithm, even if d = polylog n"



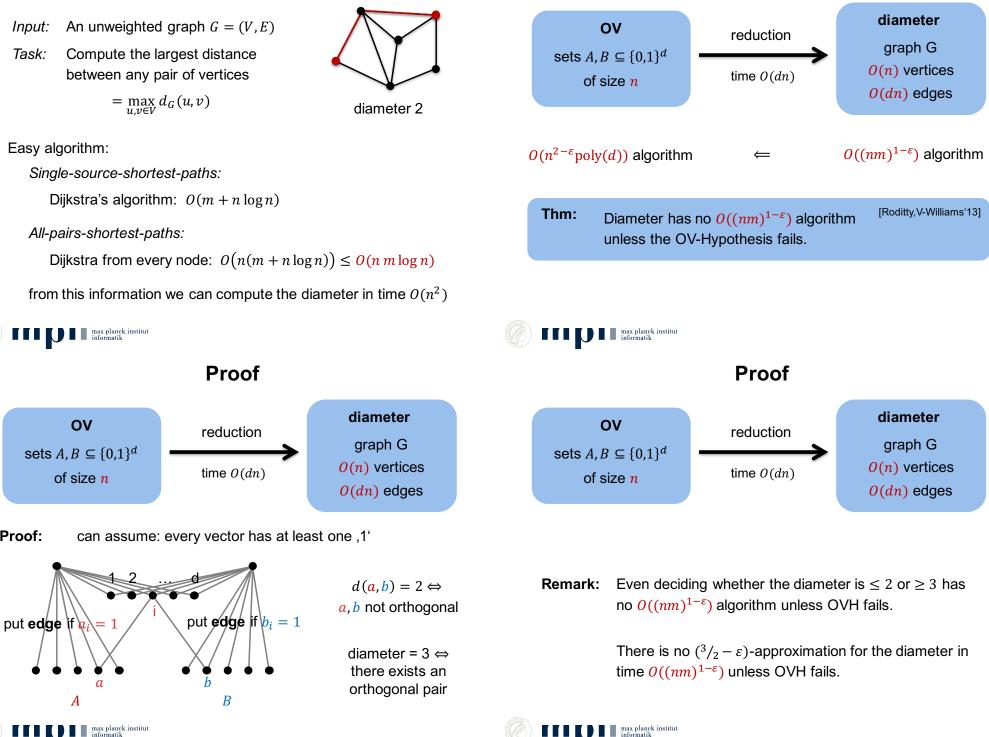
# **Graph Diameter Problem**



Task: Compute the largest distance between any pair of vertices

Proof:

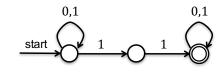
# **OV-Hardness Result**



# **NFA Acceptance Problem**

nondeterministic finite automaton G accepts input string *s* if there is a walk in G from starting state to some accepting state, labelled with s

max planck institut



string: 01011010

dynamic programming algorithm in time O(|s||G|):

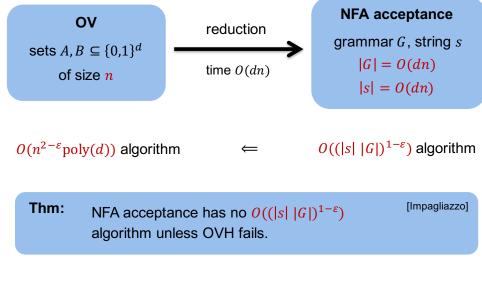
 $T[i] \coloneqq$  set of states reachable via walks labelled with s[1..i]

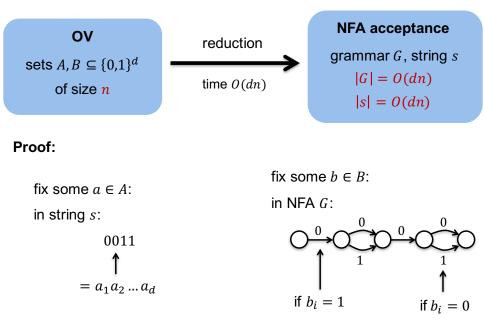
 $T[0] \coloneqq \{\text{starting state}\}$  $T[i] \coloneqq \{v \mid \exists u \in T[i-1] \text{ and } \exists \text{ transition } u \rightarrow v \text{ labelled } s[i]\}$ 

max planck institut

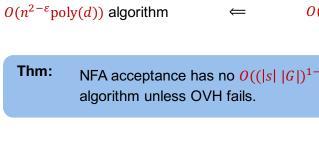
# **OV-Hardness Result**

III. Another Example for OV-hardness





max planck institut

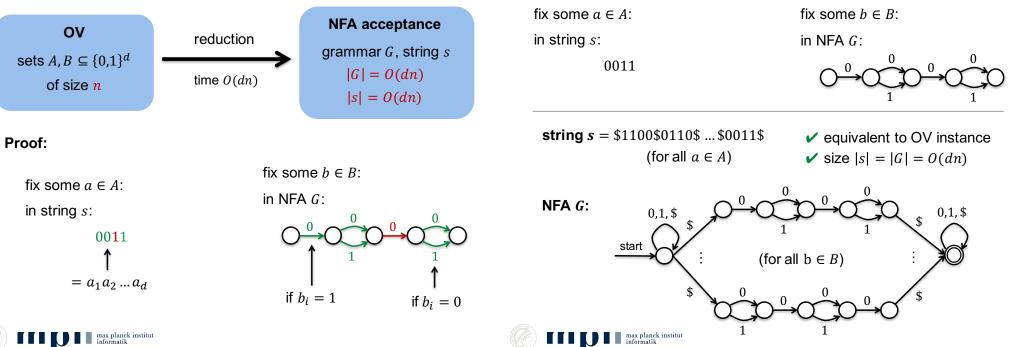




# Proof

# Proof

# Proof



max planck institut informatik