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In this chapter, we will prove that given a set P of n points in IRd, one can reduce the dimension
of the points to k = O(ε−2 log n) and distances are 1 ± ε reserved. Surprisingly, this reduction is
done by randomly picking a subspace of k dimensions and projecting the points into this random
subspace. One way of thinking about this result is that we are “compressing” the input of size
nd (i.e., n points with d coordinates) into size O(nε−2 log n), while (approximately) preserving
distances.

1 The Brunn-Minkowski inequality
For a set A ⊆ IRd, an a point p ∈ IRd, let A + p denote the translation of A by p. Formally,

A + p =
{
q + p

∣∣∣∣ q ∈ A
}
.

+ =
Definition 1.1 For two sets A and B in IRn,
let A + B denote the Minkowski sum of A
and B. Formally,

A+B =
{
a + b

∣∣∣∣ a ∈ A, b ∈ B
}
= ∪p∈A(p+B).

It is easy to verify that if A′, B′ are translated copies of A, B (that is, A′ = A+p and B = B+q, for
some points p, q ∈ IRd), respectively, then A′ + B′ is a translated copy of A + B. In particular, since
volume is preserved under translation, we have that Vol(A′+B′) = Vol((A+B)+p+q) = Vol(A+B).

Theorem 1.2 (Brunn-Minkowski inequality) Let A and B be two non-empty compact sets in IRn.
Then

Vol(A + B)1/n
≥ Vol(A)1/n + Vol(B)1/n.

Definition 1.3 A set A ⊆ IRn is a brick set if it is the union of finitely many (close) axis parallel
boxes with disjoint interiors.

It is intuitively clear, by limit arguments, that proving Theorem 1.2 for brick sets will imply it
for the general case.

∗This work is licensed under the Creative Commons Attribution-NonCommercial 2.5 License. To view a copy of
this license, visit http://creativecommons.org/licenses/by-nc/2.5/; or, (b) send a letter to Creative Com-
mons, 543 Howard Street, 5th Floor, San Francisco, California, 94105, USA.
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Lemma 1.4 (Brunn-Minkowski inequality for Brick Sets) Let A and B be two non-empty brick
sets in IRn. Then

Vol(A + B)1/n
≥ Vol(A)1/n + Vol(B)1/n

Proof: By induction on the number k of bricks in A and B. If k = 2 then A and B are just bricks,
with dimensions a1, . . . , an and b1, . . . , bn, respectively. In this case, the dimensions of A + B are
a1+b1, . . . , an+bn, as can be easily verified. Thus, we need to prove that

(∏n
i=1 ai

)1/n
+
(∏n

i=1 bi
)1/n
≤(∏n

i=1(ai + bi)
)1/n. Dividing the left side by the right side, we have n∏

i=1

ai

ai + bi

1/n

+

 n∏
i=1

bi

ai + bi

1/n

≤
1
n

n∑
i=1

ai

ai + bi
+

1
n

n∑
i=1

bi

ai + bi
= 1,

by the generalized arithmetic-geometric mean inequality¬, and the claim follows for this case.
Now let k > 2 and suppose that the Brunn-Minkowski inequality holds for any pair of brick

sets with fewer than k bricks (together). Let A, B be a pair of sets having k bricks together, and
A has at least two (disjoint) bricks. However, this implies that there is an axis parallel hyperplane
h that separates between the interior of one brick of A and the interior of another brick of A (the
hyperplane h might intersect other bricks of A). Assume that h is the hyperplane x1 = 0 (this can
be achieved by translation and renaming of coordinates).

Let A+ = A ∩ h+ and A− = A ∩ h−, where h+ and h− are the two open half spaces induced by
h. Let A+ and A− be the closure of A+ and A−, respectively. Clearly, A+ and A− are both brick sets
with (at least) one fewer brick than A.

Next, observe that the claim is translation invariant, and as such, let us translate B so that its
volume is split by h in the same ratio A’s volume is being split. Denote the two parts of B by B+

and B−, respectively. Let ρ = Vol(A+)/Vol(A) = Vol(B+)/Vol(B) (if Vol(A) = 0 or Vol(B) = 0 the
claim trivially holds).

Observe, that A+ + B+ ⊆ A + B, and it lies on one side of h, and similarly A− + B− ⊆ A + B and
it lies on the other side of h. Thus, by induction, we have

Vol(A + B) ≥ Vol(A+ + B+) + Vol(A− + B−)
≥

(
Vol(A+)1/n + Vol(B+)1/n

)n
+
(
Vol(A−)1/n + Vol(B−)1/n

)n

=
[
ρ1/n Vol(A)1/n + ρ1/n Vol(B)1/n

]n

+
[
(1 − ρ)1/n Vol(A)1/n + (1 − ρ)1/n Vol(B)1/n

]n

= (ρ + (1 − ρ))
[
Vol(A)1/n + Vol(B)1/n

]n

=
[
Vol(A)1/n + Vol(B)1/n

]n
,

establishing the claim.

Proof of Theorem 1.2: Let A1 ⊆ A2 ⊆ · · · Ai ⊆ be a sequence of brick sets, such that
⋃

i Ai = A,
and similarly let B1 ⊆ B2 ⊆ · · · Bi ⊆ · · · be a sequence of finite brick sets, such that

⋃
i Bi = B. It

is well known fact in measure theory, that limi→∞Vol(Ai) = Vol(A) and limi→∞ Vol(Bi) = Vol(B).
¬Here is a proof of this generalized form: Let x1, . . . , xn be n positive real numbers. Consider the quantity R =

x1x2 · · · xn. If we fix the sum of the n numbers to be equal α, then R is maximized when all the xis are equal. Thus,
n
√

x1x2 · · · xn ≤
n√(α/n)n = α/n = (x1 + · · · + xn)/n.

2



We claim that limi→∞Vol(Ai + Bi) = Vol(A + B). Indeed, consider any point z ∈ A + B, and let
u ∈ A and v ∈ B be such that u + v = z. By definition, there exists i, such that for all j > i we have
u ∈ A j, v ∈ B j, and as such z ∈ Ai + Bi. Thus, ∪i(Ai + Bi) = A + B.

Furthermore, for any i > 0, since Ai and Bi are brick sets, we have

Vol(Ai + Bi)1/n
≥ Vol(Ai)1/n + Vol(Bi)1/n,

by Lemma 1.4. Thus,

Vol(A + B) = lim
i→∞

Vol(Ai + Bi)1/n
≥ lim

i→∞

(
Vol(Ai)1/n + Vol(Bi)1/n

)
= Vol(A)1/n + Vol(B)1/n.

Theorem 1.5 (Brunn-Minkowski for slice volumes.) Let P be a convex set in IRn+1, and let A =
P ∩ (x1 = a), B = P ∩ (x1 = b) and C = P ∩ (x1 = c) be three slices of A, for a < b < c. We have
Vol(B) ≥ min(Vol(A),Vol(C)).

In fact, consider the function

v(t) = (Vol(P ∩ (x1 = t)))1/n ,

and let I = [tmin, tmax] be the interval where the hyperplane x1 = t intersects P. Then, v(t) is
concave in I.

Proof: If a or c are outside I, then Vol(A) = 0 or Vol(C) = 0, respectively, and then the claim
trivially holds.

Otherwise, let α = (b − a)/(c − a). We have that b = (1 − α) · a + α · c, and by the convexity of
P, we have (1 − α)A + αC ⊆ B. Thus, by Theorem 1.2 we have

v(b) = Vol(B)1/n ≥ Vol((1 − α)A + αC)1/n ≥ Vol((1 − α)A)1/n + Vol(αC)1/n

= (1 − α) · Vol(A)1/n + α · Vol(C)1/n

≥ (1 − α)v(a) + αv(c).

Namely, v(·) is concave on I, and in particular v(b) ≥ min(v(a), v(c)), which in turn implies that
Vol(B) = v(b)n ≥ min(Vol(A),Vol(B)), as claimed.

Corollary 1.6 For A and B compact sets in IRn, we have Vol((A + B)/2) ≥
√

Vol(A) Vol(B).

Proof: Vol((A + B)/2)1/n = Vol(A/2 + B/2)1/n ≥ Vol(A/2)1/n + Vol(B/2)1/n = (Vol(A)1/n +

Vol(B)n)/2 ≥
√

Vol(A)1/n Vol(B)1/n by Theorem 1.2, and since (a + b)/2 ≥
√

ab for any a, b ≥ 0.
The claim now follows by raising this inequality to the power n.

1.1 The Isoperimetric Inequality
Useless
Stuff
Warn-
ning!!!

The following is not used anywhere else and is provided because of its mathematical elegance.
The skip-able reader can thus skip this section.

The isoperimetric inequality states that among all convex bodies of a fixed surface area, the ball
has the largest volume (in particular, the unit circle is the largest area planar region with perimeter
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2π). This problem can be traced back to antiquity, in particular Zenodorus (200–140 BC) wrote a
monograph (which was lost) that seemed to have proved the claim in the plane for some special
cases. The first formal proof for the planar case was done by Steiner in 1841. Interestingly, the
more general claim is an easy consequence of the Brunn-Minkowski inequality.

Let K be a convex body in IRn and b = bn be the n dimensional ball of radius one centered at
the origin. Let S(X) denote the surface area of a compact set X ⊆ IRn. The isoperimetric inequality
states that (

Vol(K)
Vol(b)

)1/n

≤

(
S(K)
S(b)

)1/(n−1)

. (1)

Namely, the left side is the radius
of a ball having the same volume
as K, and the right side is the ra-
dius of a sphere having the same
surface area as K. In particular, if
we scale K so that its surface area
is the same as b, then the above
inequality implies that Vol(K) ≤
Vol(b).

To prove Eq. (1), observe that
Vol(b) = S(b) /n­. Also, observe
that K+εb is the body K together
with a small “atmosphere” around
it of thickness ε. In particular, the
volume of this “atmosphere” is (roughly)
εS(K) (in fact, Minkowski defined
the surface area of a convex body
to be the limit stated next). For-
mally, we have

S(K) = lim
ε→0+

Vol(K + εb) − Vol(K)
ε

≥ lim
ε→0+

(
Vol(K)1/n + Vol(εb)1/n

)n
− Vol(K)

ε
,

by the Brunn-Minkowski inequality. Now Vol(εb)1/n = εVol(b)1/n, and as such

S(K) ≥ lim
ε→0+

Vol(K) +
(

n
1

)
εVol(K)(n−1)/n Vol(b)1/n +

(
n
2

)
ε2 〈whatever〉 · · · + εn Vol(b) − Vol(K)

ε

= lim
ε→0+

nεVol(K)(n−1)/n Vol(b)1/n

ε
= n Vol(K)(n−1)/n Vol(b)1/n .

Dividing both sides by S(b) = n Vol(b), we have

S(K)
S(b)

≥
Vol(K)(n−1)/n

Vol(b)(n−1)/n ⇒

(
S(K)
S(b)

)1/(n−1)

≥

(
Vol(K)
Vol(b)

)1/n

,

establishing the isoperimetric inequality.

­Indeed, Vol(b) =
∫ 1

r=0 S(b) rn−1dr = S(b) /n.
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2 Measure Concentration on the Sphere
Let S(n−1) be the unit sphere in IRn. We assume there is a uniform probability measure defined
over S(n−1), such that its total measure is 1. Surprisingly, most of the mass of this measure is
near the equator. In fact, as the dimension increases, the width of the strip around the equator
(x1 = 0)∩ S(n−1) contains, say, 90% of the measure is of width ≈ c/n, for some constant c. Counter
intuitively, this is true for any equator. We are going to show that a stronger result holds: The mass
is concentrated close to the boundary of any set A ⊆ S(n−1) such that Pr[A] = 1/2.

Before proving this someswhat surprising theorem, we will first try to get an intuition about
the behaviour of the hypersphere in high dimensions.

2.1 The strange and curious life of the hypersphere
Consider the ball of radius r denoted by r bn, where bn is the unit radius ball centered at the origin.
Clearly, Vol(r bn) = rn Vol(bn). Now, even if r is very close to 1, the quantity rn might be very
close to zero if n is sufficiently large. Indeed, if r = 1 − δ, then rn ≤ (1 − δ)n ≤ exp(−δn), which is
very small if δ � 1/n. (Here, we used the fact that 1 − x ≤ ex, for x ≥ 0.) Namely, for the ball in
high dimensions, its mass is concentrated in a very thin shell close to its surface.

The volume of a ball and the surface area of hypersphere. In fact, let Vol(rbn) denote the
volume of the ball of radius r in IRn, Area

(
rS(n)

)
denote the surface area of its boundry (i.e., the

surface area of rS()
n − 1). It is known that

Vol(rbn) =
πn/2rn

Γ(n/2 + 1)
and Area

(
rS(n−1)

)
=

2πn/2rn−1

Γ(n/2)
,

where the Γ(·) is an extension of the factorial function. Specifically, if n is even then Γ(n/2 + 1) =
(n/2)!, and for n odd Γ(n/2+1) =

√
π(n!!)/2(n+1)/2, where n!! = 1 ·3 ·5 · · · n is the double factorial.

The most surprising implication of these two formulas is that the volume of the unit ball increases
(till dimension 5 in fact) and then it starts decreasing to zero. Similarly, the surface area of the unit
sphere S(n−1) in IRn tends to zero as the dimension increases. To see this compute the volume of the
unit ball using an integral of its slice volume, when it is being sliced by a hyperplanes perpendicular
to the nth coordinate. We have

Vol(bn) =
∫ 1

xn=−1
Vol

(√
1 − x2

n bn−1
)

dxn = Vol
(
bn−1

) ∫ 1

xn=−1

(
1 − x2

n

)(n−1)/2
dxn.

Now, the integral on the right side tends to zero as n increases. In fact, for n very large, the term(
1 − x2

n

)(n−1)/2
is very close to 0 everywhere except for a small interval around 0. This implies that

the main contribution of the volume of the ball happens when we consider slices of the ball by
hyperplanes of the form xn = δ, where δ is small.

If one has to visualize how such a ball in high dimesions looks like, it might be best to think
about it as a star-like creature: It has very little mass close to the tips of any set of orthogonal
directions we pick, and most of its mass somehow lies close to its center.®

®In short, it looks like a Boojum [Car76].
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2.2 Measure Concentration on the Sphere
Theorem 2.1 (Measure concentration on the sphere.) Let A ⊆ S(n−1) be a measurable set with
Pr[A] ≥ 1/2, and let At denote the set of points of S(n−1) in distance at most t from A, where t ≤ 2.
Then 1 − Pr[At] ≤ 2 exp

(
−tn2/2

)
.

Proof: We will prove a slightly weaker bound, with −tn2/4 in the exponent. Let

Â =
{
αx

∣∣∣∣ x ∈ A, α ∈ [0, 1]
}
⊆ bn,

where bn is the unit ball in IRn. We have that Pr[A] = µ
(
Â
)
, where µ

(
Â
)
= Vol

(
Â
)
/Vol(bn)¯

Let B = S(n−1) \ At. We have that ‖a − b‖ ≥ t for all a ∈ A and b ∈ B.

Lemma 2.2 For any â ∈ Â and b̂ ∈ B̂, we have
∥∥∥∥∥a + b

2

∥∥∥∥∥ ≤ 1 −
t2

8
.

a

b

t/2
≤{

u

o

h

Proof: Let â = αa and b̂ = βb, where a ∈ A and b ∈ B. We have

‖u‖ =
∥∥∥∥∥a + b

2

∥∥∥∥∥ =
√

12 −

∥∥∥∥∥a − b
2

∥∥∥∥∥2

≤

√
1 −

t2

4
≤ 1 −

t2

8
, (2)

since ‖a − b‖ ≥ t. As for â and b̂, assume that α ≤ β, and observe that the quantity∥∥∥∥ â + b̂
∥∥∥∥ is maximized when β = 1. As such, by the triangle inequality, we have∥∥∥∥∥∥∥ â + b̂

2

∥∥∥∥∥∥∥ =

∥∥∥∥∥αa + b
2

∥∥∥∥∥ ≤ ∥∥∥∥∥α(a + b)
2

∥∥∥∥∥ + ∥∥∥∥∥(1 − α)
b
2

∥∥∥∥∥
≤ α

(
1 −

t2

8

)
+ (1 − α)

1
2
= τ,

by Eq. (2) and since ‖b‖ = 1. Now, τ is a convex combination of the two numbers 1/2 and 1− t2/8. In particular,
we conclude that τ ≤ max(1/2, 1 − t2/8) ≤ 1 − t2/8, since t ≤ 2.

By Lemma 2.2, the set
(
Â + B̂

)
/2 is contained in a ball of radius ≤ 1 − t2/8 around the origin.

Applying the Brunn-Minkowski inequality in the form of Corollary 1.6, we have(
1 −

t2

8

)n

≥ µ

 Â + B̂
2

 ≥ √
µ
(
Â
)
µ
(
B̂
)
=

√
Pr[A] Pr[B] ≥

√
Pr[B] /2.

Thus, Pr[B] ≤ 2(1 − t2/8)2n ≤ 2 exp(−2nt2/8), since 1 − x ≤ exp(−x), for x ≥ 0.

¯This is one of these “trivial” claims that might give the reader a pause, so here is a formal proof. Pick a random
point p uniformly inside the ball bn. Let ψ be the probability that p ∈ Â. Clearly, Vol(Â) = ψVol(bn). So, consider the
normalized point q = p/ ‖p‖. Clearly, p ∈ Â if and only if q ∈ A, by the definition of Â. Thus, µ

(
Â
)
= Vol(Â)/Vol(bn) =

ψ = Pr
[
p ∈ Â

]
= Pr[q ∈ A] = Pr[A], since q has a uniform distribution on the hypersphere by the symmetry of bn.
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3 Concentration of Lipschitz Functions
Consider a function f : S(n−1) → IR. Furthermore, imagine that we have a probability density

defined over the sphere. Let Pr
[
f ≤ t

]
= Pr

[{
x ∈ S n−1

∣∣∣∣ f (x) ≤ t
}]

. We define the median of f ,

denoted by med( f ), to be the sup t, such that Pr
[
f ≤ t

]
≤ 1/2.

Lemma 3.1 Let Pr
[
f < med( f )

]
≤ 1/2 and Pr

[
f > med( f )

]
≤ 1/2.

Proof: Since
⋃

k≥1(−∞,med( f ) − 1/k] = (−∞,med( f )), we have

Pr
[
f < med( f )

]
= sup

k≥1
Pr

[
f ≤ med( f ) −

1
k

]
≤

1
2
.

Definition 3.2 (c-Lipschitz) A function f : A → B is c-Lipschitz if, for any x, y ∈ A, we have
‖ f (x) − f (y)‖ ≤ c ‖x − y‖.

Theorem 3.3 (Lévy’s Lemma.) Let f : S(n−1) → IR be 1-Lipschitz. Then for all t ∈ [0, 1],

Pr
[
f > med( f ) + t

]
≤ 2 exp

(
−t2n/2

)
and Pr

[
f < med( f ) − t

]
≤ 2 exp

(
−t2n/2

)
.

Proof: We prove only the first inequality, the second follows by symmetry. Let

A =
{
x ∈ S(n−1)

∣∣∣∣ f (x) ≤ med( f )
}
.

By Lemma 3.1, we have Pr[A] ≥ 1/2. Since f is 1-Lipschitz, we have f (x) ≤ med( f ) + t, for any
x ∈ At. Thus, by Theorem 2.1, we get Pr

[
f > med( f ) + t

]
≤ 1 − Pr[At] ≤ 2 exp

(
−t2n/2

)
.

4 The Johnson-Lindenstrauss Lemma
Lemma 4.1 For a unit vector x ∈ S(n−1), let

f (x) =
√

x2
1 + x2

2 + · · · + x2
k

be the length of the projection of x into the subspace formed by the first k coordinates. Let x be a
vector randomly chosen with uniform distribution from S(n−1). Then f (x) is sharply concentrated.
Namely, there exists m = m(n, k) such that

Pr
[
f (x) ≥ m + t

]
≤ 2 exp(−t2n/2) and Pr

[
f (x) ≤ m − t

]
≤ 2 exp(−t2n/2).

Furthermore, for k ≥ 10 ln n, we have m ≥ 1
2

√
k/n.

Proof: The orthogonal projection p : `n
2 → `k

2 given by p(x1, . . . , xn) = (x1, . . . , xk) is 1-
Lipschitz (since projections can only shrink distances, see Exercise 7.2). As such, f (x) = ‖p(x)‖ is
1-Lipschitz, since for any x, y we have

| f (x) − f (y)| =
∣∣∣ ‖p(x)‖ − ‖p(y)‖

∣∣∣ ≤ ‖p(x) − p(y)‖ ≤ ‖x − y‖ ,
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by the triangle inequality and since p is 1-Lipschitz. Theorem 3.3 (i.e., Lévy’s lemma) gives the
required tail estimate with m = med( f ).

Thus, we only need to prove the lower bound on m. For a random x = (x1, . . . , xn) ∈ S(n−1), we
have E

[
‖x‖2

]
= 1. By linearity of expectations, and symmetry, we have 1 = E

[
‖x‖2

]
= E

[∑n
i=1 x2

i

]
=∑n

i=1 E
[
x2

i

]
= n E

[
x2

j

]
, for any 1 ≤ j ≤ n. Thus, E

[
x2

j

]
= 1/n, for j = 1, . . . , n. Thus, E

[
( f (x))2

]
=

k/n. We next use the fact that f is concentrated, to show that f 2 is also relatively concentrated.
For any t ≥ 0, we have

k
n
= E

[
f 2

]
≤ Pr

[
f ≤ m + t

]
(m + t)2 + Pr

[
f ≥ m + t

]
· 1 ≤ 1 · (m + t)2 + 2 exp(−t2n/2),

since f (x) ≤ 1, for any x ∈ S(n−1). Let t =
√

k/5n. Since k ≥ 10 ln n, we have that 2 exp(−t2n/2) ≤
2/n. We get that k

n ≤ (m + k/5n)2 + 2/n. Implying that
√

(k − 2)/n ≤ m + k/5n, which in turn
implies that m ≥

√
(k − 2)/n − k/5n ≥ 1

2

√
k/n.

At this point, we would like to flip Lemma 4.1 around, and instead of randomly picking a point
and projecting it down to the first k-dimensional space, we would like x to be fixed, and randomly
pick the k-dimensional subspace. However, we need to pick this k-dimensional space carefully,
so that if we rotate this random subspace, by a transformation T , so that it occupies the first k
dimensions, then the point T (x) is uniformly distributed on the hypersphere.

To this end, we would like to randomly pick a random rotation of IRn. This is an orthonormal
matrix with determinant 1. We can generate such a matrix, by randomly picking a vector e1 ∈

S(n−1). Next, we set e1 is the first column of our rotation matrix, and generate the other n − 1
columns, by generating recursively n − 1 orthonormal vectors in the space orthogonal to e1.

Generating a random vector from the unit hypersphere, and a random rotation. At this point, the
reader might wonder how do we pick a point uniformly from the unit hypersphere. The idea is to pick a
point from the multi-dimensional normal distribution Nd(0, 1), and normalizing it to have length 1. Since
the multi-dimensional normal distribution has the density function

(2π)−n/2 exp
(
−(x2

1 + x2
2 + · · · + x2

n)/2
)
,

which is symmetric (i.e., all the points in distance r from the origin has the same distribution), it follows
that this indeed randomly generates a point randomly and uniformly on S(n−1).

Generating a vector with multi-dimensional normal distribution, is no more than picking each coor-
dinate according to the normal distribution. Given a source of random numbers according to the uniform
distribution, this can be done using a O(1) computations, using the Box-Muller transformation [BM58].

Since projecting down n-dimensional normal distribution to the lower dimensional space yields a
normal distribution, it follows that generating a random projection, is no more than randomly picking n
vectors according to the multidimensional normal distribution v1, . . . , vn. Then, we orthonormalize them,
using Graham-Schmidt, where v̂1 = v1/ ‖v1‖, and v̂i is the normalized vector of vi − wi, where wi is the
projection of vi to the space spanned by v1, . . . , vi−1.

Taking those vectors as columns of a matrix, generates a matrix A, with determinant either 1 or −1.
We multiply one of the vectors by −1 if the determinant is −1. The resulting matrix is a random rotation
matrix.

Definition 4.2 The mapping f : IRn → IRk is called K-bi-Lipschitz for a subset X ⊆ IRn if there
exists a constant c > 0 such that

cK−1 · ‖p − q‖ ≤ ‖ f (p) − f (q)‖ ≤ c · ‖p − q‖ ,

8



for all p, q ∈ X.
The least K for which f is K-bi-Lipschitz is called the distortion of f , and is denoted dist( f ).

We will refer to f as a K-embedding of X.

Theorem 4.3 (Johnson-Lindenstrauss lemma.) Let X be an n-point set in a Euclidean space,
and let ε ∈ (0, 1] be given. Then there exists a (1 + ε)-embedding of X into IRk, where k =
O(ε−2 log n).

Proof: Let X ⊆ IRn (if X lies in higher dimensions, we can consider it to be lying in the span of
its points, if it is in lower dimensions, we can add zero coordinates). Let k = 200ε−2 ln n. Assume
k < n, and let F be a random k-dimensional linear subspace of IRn. Let PF : IRn → L be the
orthogonal projection operator. Let m be the number around which ‖PF(x)‖ is concentrated, for
x ∈ S(n−1), as in Lemma 4.1.

Fix two points x, y ∈ IRn, we prove that(
1 −

ε

3

)
m ‖x − y‖ ≤ ‖PF(x) − PF(y)‖ ≤

(
1 +

ε

3

)
m ‖x − y‖

holds with probability ≥ 1−n−2. Since there are
(

n
2

)
pairs of points in X, it follows that with constant

probability this holds for all pair of points of X. In such a case, the mapping p is D-embedding of
X into IRk with D ≤ 1+ε/3

1−ε/3 ≤ 1 + ε, for ε ≤ 1.
Let u = x−y, we have PF(u) = PF(x)−PF(y) since PF(·) is a linear operator. Thus, the condition

becomes
(
1 − ε

3

)
m ‖u‖ ≤ ‖PF(u)‖ ≤

(
1 + ε

3

)
m ‖u‖. Since this condition is scale independent, we

can assume ‖u‖ = 1. Namely, we need to show that∣∣∣∣‖PF(u)‖ − m
∣∣∣∣ ≤ ε

3
m.

By Lemma 4.1 (exchanging the random space with the random vector), for t = εm/3, we have that
the probablity that this does not hold is bounded by

4 exp
(
−

t2n
2

)
= 4 exp

(
−ε2m2n

18

)
≤ 4 exp

(
−
ε2k
72

)
< n−2,

since m ≥ 1
2

√
k/n.

5 An alternative proof of the Johnson-Lindenstrauss lemma

5.1 Some Probability
Definition 5.1 Let N(0, 1) denote the one dimensional normal distribution. This distribution has
density n(x) = e−x2/2/

√
2π.

Let Nd(0, 1) denote the d-dimensional Gaussian distribution, induced by picking each coordi-
nate independently from the standard normal distribution N(0, 1).

Let Exp(λ) denote the exponential distribution, with parameter λ. The density function of the
exponential distribution is f (x) = λ exp(−λx).

Let Γλ,k denote the gamma distribution, with parameters λ and k. The density function of this
distribution is gλ,k(x) = λ (λx)k−1

(k−1)! exp(−λx). The cumulative distribution function of Γλ,k is Gλ,k(x) =

9



1 − exp(−λx)
(
1 + λx

1! + · · · +
(λx)i

i! + · · · +
(λx)k−1

(k−1)!

)
. As we prove below, gamma distribution is how

much time one has to wait till k experiments succeed, where an experiment duration distributes
according to the exponential distribution.

A random variable X has the Poisson distribution, with parameter η > 0, which is a discrete
distribution, if Pr[X = i] = e−η η

i

i! .

Lemma 5.2 The following properties hold for the d dimensional Gaussian distribution Nd(0, 1):

(i) The distribution Nd(0, 1) is centrally symmetric around the origin.

(ii) If X ∼ Nd(0, 1) and u is a unit vector, then X · u ∼ N(0, 1).

(iii) If X,Y ∼ N(0, 1) are two independent variables, then Z = X2 + Y2 follows the exponential
distribution with parameter λ = 1

2 .

(iv) Given k independent variables X1, . . . , Xk distributed according to the exponential distri-
bution with parameter λ, then Y = X1 + · · · + Xk is distributed according to the Gamma
distribution Γλ,k(x).

Proof: (i) Let x = (x1, . . . , xd) be a point picked from the Gaussian distribution. The density
φd(x) = φ(x1)φ(x2) · φ(xd), where φ(xi) is the normal distribution density function, which is φ(xi) =
exp(−x2

i /2)/
√

2π. Thus φd(x) = (2π)−n/2 exp(−(x2
1 · · · + x2

d)/2). Consider any two points x, y ∈ IRn,
such that r = ‖x‖ = ‖y‖. Clearly, φd(x) = φd(y). Namely, any two points of the same distance from
the origin, have the same density (i.e., “probability”). As such, the distribution Nd(0, 1) is centrally
symmetric around the origin.

(ii) Consider e1 = (1, 0, . . . , 0) ∈ IRn. Clearly, x · e1 = x1, which is distributed N(0, 1). Now, by
the symmetry of Nd(0, 1), this implies that x · u is distributed N(0, 1). Formally, let R be a rotation
matrix that maps u to e1. We know that Rx is distributed Nd(0, 1) (since Nd(0, 1) is centrally
symmetric). Thus x · u has the same distribute as Rx · Ru, which has the same distribution as x · e1,
which is N(0, 1).

(iii) If X,Y ∼ N(0, 1), and consider the integral of the density function

A =
∫ ∞

x=−∞

∫ ∞

y=−∞

1
2π

exp
(
−

x2 + y2

2

)
dx dy.

We would like to change the integration variables to x(r, α) =
√

r sinα and y(r, α) =
√

r cosα. The
Jacobian of this change of variables is

I(r, α) =

∣∣∣∣∣∣∂x
∂r

∂x
∂α

∂y
∂r

∂y
∂α

∣∣∣∣∣∣ =
∣∣∣∣∣∣∣

sinα
2
√

r

√
r cosα

cosα
2
√

r −
√

r sinα

∣∣∣∣∣∣∣ = −1
2

(
sin2 α + cos2 α

)
= −

1
2
.

As such, we have

Pr[Z = z] =
∫

x2+y2=α

1
2π

exp
(
−

x2 + y2

2

)
=

∫ 2π

α=0

1
2π

exp
(
−

x(
√

z, α)2 + y(
√

z, α)2

2

)
· |I(r, α)|

=
1

2π
·

1
2
·

∫ 2π

α=0
exp

(
−

z
2

)
=

1
2

exp
(
−

z
2

)
.
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As such, Z has an exponential distribution with λ = 1/2.
(iv) For k = 1 the claim is trivial. Otherwise, let gk−1(x) = λ (λx)k−2

(k−2)! exp(−λx). Observe that

gk(t) =
∫ t

0
gk−1(t − x)g1(x) dx =

∫ t

0

(
λ

(λ(t − x))k−2

(k − 2)!
exp(−λ(t − x))

)(
λ exp(−λx)

)
dx

=

∫ t

0
λ2 (λ(t − x))k−2

(k − 2)!
exp(−λt) dx

= λ exp(−λt)
∫ t

0
λ

(λx)k−2

(k − 2)!
dx = λ exp(−λt)

(λt)k−1

(k − 1)!
= gk(x).

5.2 The proof
Lemma 5.3 Let u be a unit vector in IRd. For any even positive integer k, let U1, . . . ,Uk be random
vectors chosen independently from the d-dimensional Gaussian distribution Nd(0, 1). For Xi =

u · Ui, define W = W(u) = (X1, . . . , Xk) and L = L(u) = ‖W‖2. Then, for any β > 1, we have:

1. E[L] = k.

2. Pr
[
L ≥ βk

]
≤ k+3

2 exp
(
− k

2 (β − (1 + ln β))
)
.

3. Pr
[
L ≤ k/β

]
≤ 6k exp

(
− k

2 (β−1 − (1 − ln β))
)
.

Proof: By Lemma 5.2 (ii) each Xi is distributed as N(0, 1), and X1, . . . , Xk are independent.
Define Yi = X2

2i−1 + X2
2i, for i = 1, . . . , τ, where τ = k/2. By Lemma 5.2 (iii) Yi follows the

exponential distribution with parameter λ = 1/2. Let L =
∑τ

i=1 Yi. By Lemma 5.2 (iv), the variable
L follows the Gamma distribution (k/2, 1/2), and its expectation is E[L] =

∑k/2
i=1 E[Yi] = 2τ = k.

Now, let η = βτ = βk/2, we have

Pr
[
L ≥ βk

]
= 1 − Pr

[
L ≤ βk

]
= 1 −G1/2,τ(βk) =

τ∑
i=0

e−η
ηi

i!
≤ (τ + 1)e−η

ητ

τ!
,

since η = βτ > τ, as β > 1. Now, since τ! ≥ (τ/e)τ, as can be easily verified°, and thus

Pr
[
L ≥ βk

]
≤ (τ + 1)e−η

ητ

ττ/eτ
= (τ + 1)e−η

(eη
τ

)τ
= (τ + 1)e−βτ

(eβτ
τ

)τ
= (τ + 1)e−βτ · exp(τ ln(eβ)) = (τ + 1) exp(−τ(β − (1 + ln β)))

=
k + 3

2
exp

(
−

k
2

(β − (1 + ln β))
)
.

Arguing in a similar fashion, we have, for ν = d2eτe, that

Pr
[
L ≤ k/β

]
=

∞∑
i=τ

e−τ/β
(τ/β)i

i!
≤ e−τ/β

∞∑
i=τ

(
eτ
iβ

)i

= e−τ/β
 ν∑

i=τ

(
eτ
iβ

)i

+

∞∑
i=ν+1

(
eτ
iβ

)i
≤ e−τ/β

 ν∑
i=τ

(
eτ
iβ

)i

+
1

(2β)ν

 ≤ 2e−τ/β
ν∑

i=τ

(
eτ
iβ

)i

,

°Indeed, ln τ! =
∑τ

i=1 ln i ≥
∫ n

x=1 ln x dx =
[
x ln x − x

]n

x=1
= n ln n − n + 1 ≥ n ln n − n = ln((n/e)n).
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since (eτ/τβ)τ ≥ 1/(2β)ν. As the sequence (eτ/iβ)i is decreasing for i > τ/β, as can be easily
verified±, we can bound the (decreasing) summation above by

ν∑
i=τ

(
eτ
iβ

)i

≤ ν

(
e
β

)τ
= d2eτe exp(τ(1 − ln β)) .

We conclude

Pr
[
L ≤ k/β

]
≤ 2 d2eτe exp(−τ/β + τ(1 − ln β)) ≤ 6k exp

(
−

k
2

(β−1 − (1 − ln β))
)
.

Next, we show how to interpret the inequalities of Lemma 5.3 in a somewhat more intuitive
way. Let β = 1+ε, for ε such that 1 > ε > 0. From the Taylor expansion of ln(1+x) =

∑∞
i=0

(−1)i

i+1 xi+1,
it follows that ln β ≤ ε − ε2/2 + ε3/3. By plugging it into the upper bound for Pr

[
L ≥ βk

]
we get

Pr
[
L ≥ βk

]
≤

k + 3
2

exp
(
−

k
2

(1 + ε − 1 − ε + ε2/2 − ε3/3)
)
≤

k + 3
2

exp
(
−

k
2

(ε2/2 − ε3/3)
)

On the other hand, since ln β ≥ ε − ε2/2, we have Pr
[
L ≤ k/β

]
≤ 6k exp(∆), where

∆ = −
k
2

(β−1 − (1 − ln β)) ≤ −
k
2

(
1

1 + ε
− 1 + ε −

ε2

2

)
≤ −

k
2

(
ε2

1 + ε
−
ε2

2

)
= −

k
2
·
ε2 − ε3

2(1 + ε)

Thus, the probability that a given unit vector gets distorted by more than (1+ε) in any direction²

grows roughly as exp(−kε2/4), for small ε > 0. Therefore, if we are given a set P of n points in
l2, we can set k to roughly 8 ln(n)/ε2 and make sure that with non-zero probability we obtain
projection which does not distort distances³ between any two different points from P by more than
(1 + ε) in each direction.

Theorem 5.4 Let P be a set of n points in IRd, 0 < ε, δ < 1/2, and k = 16 ln(n/δ)/ε2. Let
U1, . . . ,Uk be random vectors chosen independently from the d-dimensional Gaussian distribution
Nd(0, 1), and let T (x) = (U1 · x, . . . ,Uk · x) be a linear transformation. Then, with probablity
≥ 1 − δ, for any p, q ∈ P, we have that

1
(1 + ε)

√
k ‖p − q‖ ≤ ‖T (p) − T (q)‖ ≤ (1 + ε)

√
k ‖p − q‖ .

Sometime it is useful to be able to handle high distortion.

Corollary 5.5 Let k be the target dimension of the transformation T of Theorem 5.4 and β ≥ 3 a
parameter. We have that

‖T (p) − T (q)‖ ≤ β
√

k ‖p − q‖ ,

for any two points p, q ∈ P, and this holds with probability ≥ 1 − exp
(
−

kβ2

32 ln n

)
.

±Indeed, consider the function f (x) = x ln(c/x), its derivative is f ′(x) = ln(c/x) − 1, and as such f ′(x) = 0, for
x = c/e. Namely, for c = eτ/β, the function f (x) achieves its maximum at x = τ/β, and from this point on the function
is decreasing.

²Note that this implies distortion (1 + ε)2 if we require the mapping to be a contraction.
³In fact, this statement holds even for the square of the distances.
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6 Bibliographical notes
Our presentation follows Matoušek [Mat02]. The Brunn-Minkowski inequality is a powerful in-
equality which is widely used in mathematics. A nice survey of this inequality and its applications
is provided by Gardner [Gar02]. Gardner says: “In a sea of mathematics, the Brunn-Minkowski
inequality appears like an octopus, tentacles reaching far and wide, its shape and color changing
as it roams from one area to the next.” However, Gardner is careful in claiming that the Brunn-
Minkowski inequality is one of the most powerful inequalities in mathematics since as a wit put it
“the most powerful inequality is x2 ≥ 0, since all inequalities are in some sense equivalent to it.”

A striking application of the Brunn-Minkowski inequality is the proof that in any partial order-
ing of n elements, there is a single comparison that knowing its result, reduces the number of linear
extensions that are consistent with the partial ordering, by a constant fraction. This immediately
implies (the uninteresting result) that one can sort n elements in O(n log n) comparisons. More
interestingly, it implies that if there are m linear extensions of the current partial ordering, we can
always sort it using O(log m) comparisons. A nice exposition of this surprising result is provided
by Matoušek [Mat02, Section 12.3].

The probability review of Section 5.1 can be found in Feller [Fel71]. The alternative proof of
the Johnson-Lindenstrauss lemma of Section 5.2 is described by Indyk and Motwani [IM98] but
earlier proofs are known [Dur95]. It exposes the fact that the Johnson-Lindenstrauss lemma is no
more than yet another instance of the concentration of mass phenomena (i.e., like the Chernoff
inequality). The alternative proof is provided since it is conceptually simpler (although the compu-
tations are more involved), and it is technically easier to use. Another alternative proof is provided
by Dasgupta and Gupta [DG03].

Interestingly, it is enough to pick each entry in the dimension reducing matrix randomly out of
−1, 0, 1. This requires more involved proof [Ach01]. This is useful when one care about storing
this dimension reduction transformation efficiently.

Magen [Mag02] observed that in fact the JL lemma preserves angles, and in fact can be used to
preserve any “k dimensional angle”, by projecting down to dimension O(kε−2 log n). In particular,
Exercise 7.3 is taken from there.

In fact, the random embedding preserves much more structure than just distances between
points. It preserves the structure and distances of surfaces as long as they are low dimensional and
“well behaved”, see [AHY07] for some results in this direction.

Dimension reduction is crucial in learning, AI, databases, etc. One common technique that is
being used in practice is to do PCA (i.e., principal component analysis) and take the first few main
axises. Other techniques include independent component analysis, and MDS (multidimensional
scaling). MDS tries to embed points from high dimensions into low dimension (d = 2 or 3),
which preserving some properties. Theoretically, dimension reduction into really low dimensions
is hopeless, as the distortion in the worst case is Ω(n1/(k−1)), if k is the target dimension [Mat90].

7 Exercises
Exercise 7.1 (Boxes can be separated.) [1 Points]

(Easy.) Let A and B be two axis-parallel boxes that are interior disjoint. Prove that there is
always an axis-parallel hyperplane that separates the interior of the two boxes.
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Exercise 7.2 (Projections are contractions.) [1 Points]
(Easy.) Let F be a k-dimensional affine subspace, and let PF : IRd → F be the projection

that maps every point x ∈ IRd to its nearest neighbor on F. Prove that p is a contraction (i.e.,
1-Lipschitz). Namely, for any p, q ∈ IRd, it holds that ‖PF(p) − PF(q)‖ ≤ ‖ p − q ‖.

Exercise 7.3 (JL Lemma works for angles.) [10 Points]
Show that the Johnson-Lindenstrauss lemma also (1 ± ε)-preserves angles among triples of

points of P (you might need to increase the target dimension however by a constant factor). [Hint:
For every angle, construct a equilateral triangle that its edges are being preserved by the projection
(add the vertices of those triangles [conceptually] to the point set being embedded). Argue, that
this implies that the angle is being preserved.]

References
[Ach01] D. Achlioptas. Database-friendly random projections. In Proc. 20th ACM Sympos.

Principles Database Syst., pages 274–281, 2001.

[AHY07] P. Agarwal, S. Har-Peled, and H. Yu. Embeddings of surfaces, curves, and moving
points in euclidean space. In Proc. 23rd Annu. ACM Sympos. Comput. Geom., page to
appear, 2007.

[BM58] G. E.P. Box and M. E. Muller. A note on the generation of random normal deviates.
Annl. Math. Stat., 28:610–611, 1958.

[Car76] L. Carroll. The hunting of the snark, 1876.

[DG03] S. Dasgupta and A. Gupta. An elementary proof of a theorem of Johnson and Linden-
strauss. Rand. Struct. Alg., 22(3):60–65, 2003.

[Dur95] R. Durrett. Probability: Theory and Examples. Duxbury Press, August 1995.

[Fel71] W. Feller. An Introduction to Probability Theory and its Applications, volume II. John
Wiley & Sons, NY, 1971.

[Gar02] R. J. Gardner. The Brunn-Minkowski inequality. Bull. Amer. Math. Soc., 39:355–405,
2002.

[IM98] P. Indyk and R. Motwani. Approximate nearest neighbors: Towards removing the curse
of dimensionality. In Proc. 30th Annu. ACM Sympos. Theory Comput., pages 604–613,
1998.

[Mag02] A. Magen. Dimensionality reductions that preserve volumes and distance to affine
spaces, and their algorithmic applications. In The 6th Intl. Work. Rand. Appr. Tech.
Comp. Sci., pages 239–253, 2002.

[Mat90] J. Matoušek. Bi-lipschitz embeddings into low-dimensional euclidean spaces. Com-
ment. Math. Univ. Carolinae, 31:589–600, 1990.

14

http://valis.cs.uiuc.edu/~sariel/papers/06/embed/
http://valis.cs.uiuc.edu/~sariel/papers/06/embed/
http://www.amazon.co.uk/exec/obidos/ASIN/0534243185/citeulike-21
http://www.ac.wwu.edu/~gardner/gorizia12.pdf
http://theory.lcs.mit.edu/~indyk/nndraft.ps
http://theory.lcs.mit.edu/~indyk/nndraft.ps


[Mat02] J. Matoušek. Lectures on Discrete Geometry. Springer, 2002.

15

http://kam.mff.cuni.cz/~matousek/dg.html

	The Brunn-Minkowski inequality
	The Isoperimetric Inequality

	Measure Concentration on the Sphere
	The strange and curious life of the hypersphere
	Measure Concentration on the Sphere

	Concentration of Lipschitz Functions
	The Johnson-Lindenstrauss Lemma
	An alternative proof of the Johnson-Lindenstrauss lemma
	Some Probability
	The proof

	Bibliographical notes
	Exercises
	References

