Spring Semester 2005 Topics in Computation Theory (CS700) Discrete Geometry Homework 7

This homework is due on *Tuesday* **June 14**, at the beginning of the class at 1:00 p.m. On the top of the first sheet that you turn in, please put (a) your name and student number, (b) how much time you spent working on the homework, and (c) a little table with your self-evaluation as explained on the course webpage.

- 1. Let (X, \preceq) be a finite poset. Prove that if \preceq is not a linear ordering, then there always exist $a, b \in X$ with $|h_{\preceq}(a) h_{\preceq}(b)| < 1$.
- 2. Let $g_1, g_2, \ldots, g_m \subset \mathbb{R}^2$ be graphs of piecewise linear functions $\mathbb{R} \to \mathbb{R}$ that together consist of *n* segments and rays. Prove that the lower envelope of g_1, g_2, \ldots, g_m has complexity $O(\frac{n}{m}\lambda_3(2m))$; in particular, if m = O(1), then the complexity is linear.
- 3. Given a construction of a set of n segments in the plane with lower envelope of complexity $\sigma(n)$, show that the lower envelope of n triangles in \mathbb{R}^3 can have complexity $\Omega(n\sigma(n))$.
- 4. Let S be a set of n points in the plane, let $s \in S$, and consider the Voronoi cell $V := \{x \in \mathbb{R}^2 \mid d(x,s) = d(x,S)\}$. Show that for any $\varepsilon > 0$ there exists an approximate Voronoi cell V_{ε} , which is a convex polygon with $O(1/\varepsilon)$ sides such that $V \subset V_{\varepsilon}$ and $x \in V_{\varepsilon}$ implies that $d(x,s) \leq (1+\varepsilon)d(x,S)$.

Hint: Draw $O(1/\varepsilon)$ rays starting in s, partitioning the plane into $O(1/\varepsilon)$ regions.