CMSC 754 Dave Mount

CMSC 754: Lecture 2

Geometric Basics and Fixed-Radius Near Neighbors
Tuesday, Sep 6, 2005

The material on affine and Euclidean geometry will not be covered in lecture, but is presented here just in
case you are interested in refreshing your knowledge on how basic geometric entities are represented and
manipulated.

Reading: The material on the Fixed-Radius Near Neighbor problem is taken from the paper: “The
complexity of finding fixed-radius near neighbors,” by J. L. Bentley, D. F. Stanat, and E. H. Williams,
Information Processing Letter§(6), 1977, 209-212.

Geometry Basics: As we go through the semester, we will introduce much of the geometric facts and com-
putational primitives that we will be needing. For the most part, we will assume that any geometric
primitive involving a constant number of elements of constant complexity can be compu®d)in
time, and we will not concern ourselves with how this computation is done. (For example, given three
non-collinear points in the plane, compute the unique circle passing through these points.) Nonethe-
less, for a bit of completeness, let us begin with a quick review of the basic elements of affine and
Euclidean geometry.

There are a number of different geometric systems that can be used to express geometric algorithms:
affine geometry, Euclidean geometry, and projective geometry, for example. This semester we will be
working almost exclusively with affine and Euclidean geometry. Before getting to Euclidean geometry
we will first define a somewhat more basic geometry called affine geometry. Later we will add one
operation, called an inner product, which extends affine geometry to Euclidean geometry.

Affine Geometry: An affine geometry consists of a setsifalars(the real numbers), a set pbints and
a set offree vectorgor simply vectorg. Points are used to specify position. Free vectors are used
to specify direction and magnitude, but have no fixed position in space. (This is in contrast to linear
algebra where there is no real distinction between points and vectors. However this distinction is
useful, since the two are conceptually quite different.)

The following are the operations that can be performed on scalars, points, and vectors. Vector opera-
tions are just the familiar ones from linear algebra. It is possible to subtract two points. The difference
p — q of two points results in a free vector directed frgnto p. It is also possible to add a point to

a vector. In point-vector addition + v results in the point which is translated byfrom p. Letting

S denote an generic scaldr, a generic vector an@ a generic point, the following are the legal
operations in affine geometry:

SV -V scalar-vector multiplication
V+V — V vector addition
P-P — V point subtraction
P+V — P point-vector addition

Lecture 2 1 Fall 2005

CMSC 754 Dave Mount

u+v q
u p+v
Vv p ﬁ_q D/

vector addition point subtraction point-vector addition

Figure 1: Affine operations.

A number of operations can be derived from these. For example, we can define the subtraction of two
vectorsi — v asi + (—1) - ¥ or scalar-vector division/« as(1/«) - ¥ provideda # 0. There is one
special vector, called theero vector0, which has no magnitude, such that 0 = .

Note that it isnot possible to multiply a point times a scalar or to add two points together. However
there is a special operation that combines these two elements, califitharcombinationGiven two
pointspy andp; and two scalars andas, such thatyy + a1 = 1, we define the affine combination

aff (po, p1; 0, 1) = agpo + aip1 = po + a1 (p1 — po)-

Note that the middle term of the above equation is not legal given our list of operations. But this is
how the affine combination is typically expressed, namely as the weighted average of two points. The
right-hand side (which is easily seen to be algebraically equivalent) is legal. An important observation
is that, ifpg # p1, then the pointff (po, p1; ap, 1) lies on the line joiningyy andp;. As oy varies

from —oco to +o0 it traces out all the points on this line.

aff(p,q; 3/2, -1/2)

aff(p,q; 1, 0)

aff(p,q; 1/2,1/2)
aff(p,q; 0, 1)

e

q

Figure 2: Affine combination.

In the special case whefe < «ag, a1 < 1, aff(po, p1; 0, 1) iS a point that subdivides the line
segmentpop; into two subsegments of relative sizes to . The resulting operation is called a
convex combinatigrand the set of all convex combinations traces out the line segrgent

It is easy to extend both types of combinations to more than two points, by adding the condition that
the sumag + a1 + as = 1.

aff (po, p1,p2; 0, 1,) = po + cup1 + ep2 = po + a1(p1 — po) + aa(p2 — po)-

The set of all affine combinations of three (non-collinear) points generates a plane. The set of all
convex combinations of three points generates all the points of the triangle defined by the points.
These shapes are called tféne sparor affine closureandconvex closuref the points, respectively.

Euclidean Geometry: In affine geometry we have provided no way to talk about angles or distances. Eu-
clidean geometry is an extension of affine geometry which includes one additional operation, called
theinner product which maps two real vectors (not points) into a nonnegative real. One important
example of an inner product is tli®t product defined as follows. Suppose that thelimensional

Lecture 2 2 Fall 2005

CMSC 754 Dave Mount

vectorsu and ¢’ are represented by the (nonhomogeneous) coordinate véators,, . . ., ug) and
(v1,v2,...,vq). Define

d
uU-U= Z U;V;,
=1
The dot product is useful in computing the following entities.

Length: of a vectorv is defined to bé|v|| = Vv - ©.

Normalization: Given any nonzero vectar, define thenormalizationto be a vector of unit length
that points in the same direction @sWe will denote this byo:

—

R v

V= 757.

17|

Distance between points:Denoted either digp, ¢) or ||pq|| is the length of the vector between them,
Ip = all

Angle: between two nonzero vectoisandv (ranging from O tor) is
u-v
ang(it, ¥) = cos ! <ﬁ> = cos (@ - D).
]|
This is easy to derive from the law of cosines.

Orientation of Points: In order to make discrete decisions, we would like a geometric operation that op-
erates on points in a manner that is analogous to the relational opergtioas >) with numbers.
There does not seem to be any natural intrinsic way to compare two poiitdimensional space,
but there is a natural relation between ordef@d- 1)-tuples of points ini-space, which extends the
notion of binary relations in 1-space, calledentation

Given an ordered triple of pointg, ¢, r) in the plane, we say that they hgvesitive orientatiorif they
define a counterclockwise oriented trianghegative orientatiornf they define a clockwise oriented
triangle, andzero orientatiorif they are collinear (which includes as well the case where two or more
of the points are identical). Note that orientation depends on the order in which the points are given.

ol

S0 o q » q -
;e r. pr
po p. / e r p- q
positive negative zero zero

Figure 3: Orientations of the ordered trigle ¢,).

Orientation is formally defined as the sign of the determinant of the points given in homogeneous
coordinates, that is, by prepending a 1 to each coordinate. For example, in the plane, we define

1 ps Dy

Orientp,q,r) =det| 1 ¢, ¢
1 ry 1y

Lecture 2 3 Fall 2005

CMSC 754 Dave Mount

Observe that in the 1-dimensional case, Ofignt) is justq — p. Hence it is positive ip < g, zero if

p = ¢, and negative ip > ¢. Thus orientation generalizes =, > in 1-dimensional space. Also note

that the sign of the orientation of an ordered triple is unchanged if the points are translated, rotated, or
scaled (by a positive scale factor). A reflection transformation, é(g@.,y) = (—z,y), reverses the

sign of the orientation. In general, applying any affine transformation to the point alters the sign of
the orientation according to the sign of the matrix used in the transformation.

This generalizes readily to higher dimensions. For example, given an ordered 4-tuple points in 3-
space, we can define their orientation as being either positive (forming a right-handed screw), negative
(a left-handed screw), or zero (coplanar). It can be computed as the sign of the determinant of an
appropriatet x 4 generalization of the above determinant. This can be generalized to any ordered

(d + 1)-tuple of points ind-space.

Areas and Angles: The orientation determinant, together with the Euclidean norm can be used to compute
angles in the plane. This determinant Orignt, r) is equal to twice the signed area of the triangle
Apgr (positive if CCW and negative otherwise). Thus the area of the triangle can be determined
by dividing this quantity by 2. In general in dimensidrthe area of the simplex spanned dby- 1
points can be determined by taking this determinant and dividing byd - (d — 1) ---2- 1. Given
the capability to compute the area of any triangle (or simplex in higher dimensions), it is possible
to compute the volume of any polygon (or polyhedron), given an appropriate subdivision into these
basic elements. (Such a subdivision does not need to be disjoint. The simplest methods that | know
of use a subdivision into overlapping positively and negatively oriented shapes, such that the signed
contribution of the volumes of regions outside the object cancel each other out.)

Recall that the dot product returns the cosine of an angle. However, this is not helpful for distinguish-
ing positive from negative angles. The sine of the arfgle Zpgr (the signed angled from vector
p — q to vectorr — ¢) can be computed as

Orient(q, p,r)
lp—qll-llr—ql

sinf =

(Notice the order of the parameters.) By knowing both the sine and cosine of an angle we can unam-
biguously determine the angle.

Fixed-Radius Near Neighbor Problem: As a warm-up exercise for the course, we begin by considering
one of the oldest results in computational geometry. This problem was considered back in the mid
70’s, and is a fundamental problem involving a set of points in dimengiowe will consider the
problem in the plane, but the generalization to higher dimensions will be straightforward. The solution
also illustrates a common class of algorithms in CG, which are based on grouping objects into buckets
that are arranged in a square grid.

We are given a seP of n points in the plane. It will be our practice throughout the course to assume
that each poinp is represented by itSc, y) coordinates, denote@., p,). Recall that the Euclidean
distance between two pointsandg, denoted|pq||, is

Ipall = \/(pm — 42)* + (py — ay)*.

Given the sefP” and a distance > 0, our goal is to report all pairs of distinct pointsq € P such
that||pq|| < r. This is called thdixed-radius near neighbor (reporting) problem

Lecture 2 4 Fall 2005

CMSC 754 Dave Mount

Reporting versus Counting: We note that this is eeportingproblem, which means that our objective is to
report all such pairs. This is in contrast to the correspondmgmtingproblem, in which the objective
is to return a count of the number of pairs satisfying the distance condition.

It is usually easier to solve reporting problems optimally than counting problems. This may seem
counterintuitive at first (after all, if you can report, then you can certainly count). The reason is that
we know that any algorithm that reports some nunibef pairs must take at leagt(k) time. Thus if

k is large, a reporting algorithm has the luxury of being able to run for a longer time and still claim to
be optimal. In contrast, we cannot apply such a lower bound to a counting algorithm.

The approach described here seems to work only for the reporting case. There is a more efficient
solution to the counting problem, but this requires more sophisticated methods.

Simple Observations: To begin, let us make a few simple observations. This problem can easily be solved
in O(n?) time, by simply enumerating all pairs of distinct points and computing the distance between
each pair. The number of distinct pairsropoints is

(3) -

Letting £ denote the number of pairs that reported, our goal will be to find an algorithm whose running
time is (nearly) linear im andk, ideally O(n + k). This will be optimal, since any algorithm must

take the time to read all the input and print all the results. (This assumes a naive representation of the
output. Perhaps there are more clever ways in which to encode the output, which would require less
thanO(k) space.)

To gain some insight to the problem, let us consider how to solve the 1-dimensional version, where
we are just given a set of points on the line, say;, x2, ..., x,. In this case, one solution would be
to first sort the values in increasing order. Let suppose we have already done this, and so:

T <X < ...<Tp.

Now, for i running from 1 ton, we consider the successive poimts1, x;12, x;13, and so on, until
we first find a point whose distance exceedd\Ve reportz; together with all succeeding points that
are within distance.

—
X1 XoX3 ! X5 Xg
[EE . [

Figure 4: Fixed radius nearest neighbor on the line.

The running time of this algorithm involves tli&n log n) time needed to sort the points and the time
required for distance computations. Lgtdenote the number of pairs generated when we yjsit
Observe that the processingmfinvolvesk; + 1 distance computations (one additional computation
for the points whose distance exceefisThus, up to constant factors, the total running time is:

T(n,k) = nlogn—&—Z(ki—i—l) = nlogn—i—n—i—Zk‘i
i=1 =1

= nlogn+n+k = O(k+nlogn).

Lecture 2 5 Fall 2005

CMSC 754 Dave Mount

This is close to the (k + n) time we were hoping for. It seems that any approach based on sorting
is doomed to take at lea€t(n log n) time. So, if we are to improve upon this, we cannot sort. But is
sorting really necessary? Let us consider an approach based on bucketing.

1-dimensional Solution with Bucketing: Rather than sorting the points, suppose that we subdivide the line
into intervals of lengthr. In particular, we can take the line to be composed of an infinite collection
of half-open intervals:

ooy [=3r,=2r), [=2r,—7), [-1,0), [0,7), [r,2r), [2r,3r),...

We refer to these disjoint intervals Asckets Given the intervalbr, (b + 1)r), its bucket indexs

the integerb. Given any pointz, it is easy to see that the index of the containing bucket is just
b(xz) = |x/r]. Thus, inO(n) time we can associate thepoints of P with a set ofn integer bucket
indices,b(x) for eachx € P. Although there are an infinite number of buckets, at mostill be
occupied meaning that they contain at least one poinfPof

There are a number of ways to organize the occupied buckets. They could be sorted, but then we are
back toO(nlogn) time. Since bucket indices are integers, a better approach is to store the occupied
bucket indices in dash table Recall from basic data structures that a hash table is a data structure
that supports the following operations@n1) expected time:

insert(o, X): Insert objecb with key valuex. We allow multiple objects to be inserted with the same
key.

L =find(x): Return a listL of references to objects having key valueThis operation take® (1 +
|L|) expected time. If no keys have this value, then an empty list is returned.

remove(o, X): Remove the object indicated by referencéaving key value: from the table.

Each point is associated with the key value given by its bucket ibdex |z/r|. Thus inO(1)
expected time, we can determine which bucket contains a given point and look this bucket up in the
hash table.

The fact that the running time is in the expected case, rather than worst case is a bit unpleasant. How-
ever, it can be shown that by using a good randomized hash function, the probability that the total
running time is worse tha®(n) can be made arbitrarily small. If the algorithm performs signifi-
cantly more than the expected number of computations, we can simply chose a different random hash
function and try again. This will lead to a very practical solution.

How does bucketing help? Observe that if pairiies in buckeb, then any successors that lie within
distancer must lie either in bucket or in b + 1. This suggests the straightforward solution shown
below.

Fixed-Radius Near Neighbor on the Line by Bucketing
(1) Foreachr € P, insertx in the hash table with the key valaér).

(2) For eachr € P do the following:

(@) Letd(x) be the bucket containing.

(b) Enumerate all the points of buckéts:) andb(x) + 1, and for each point’ € b(xz) U b(z) + 1 such that
0 < 2’ —x < r, output the paifz, ').

Lecture 2 6 Fall 2005

CMSC 754 Dave Mount

Note that, in order to avoid duplicates we only report péirst’) wherez’ > x. The key question is
determining the time complexity of this algorithm is how many distance computations are performed
in step (2b). We compare each point in bucketith all the points in buckets andb + 1. However,

not all of these distance computations will result in a pair of points whose distance is witiight

it be that we waste a great deal of time in performing computations for which we receive no benefit?
The lemma below shows that we perform no more than a constant factor times as many distance
computations and pairs that are produced.

It will simplify things considerably if, rather than counting distinct pairs of points, we simply count
all (ordered) pairs of points that lie within distanc®f each other. Thus each pair of points will be
counted twice(p, ¢) and(q, p). Note that this includes reporting each point as a faip) as well,
since each point is within distaneeof itself. This does not affect the asymptotic bounds, since the
number of distinct pairs is smaller by a factor of rough}2.

Lemma: Let & denote the number of (not necessarily distinct) pairs of point® tfiat are within
distance- of each other. LeD denote the total number distance computations made in step (2b)
of the above algorithm. TheP < 2k.

Proof: We will make use of the following inequality in the proof:
22 4 o2
<
TY = 9
This follows by expanding the obvious inequality — v)? > 0.

Let B denote the (infinite) set of buckets. For any budket B, letb + 1 denote its successor
bucket on the line, and let, denote the number of points éfin b. Define

S:an.

beB

First we bound the total number of distance computatibras a function ofS. Each point in
bucketb computes the distance to every other point in buéketd every point in buckét+ 1,
and hence

D = an(nb+nb+1) = Zn%%—nwbH = Zn%+2nbnb+1

beB beB beB beB

Z nz n Z ”1% +2”g+1

beB beB

2 2
2 T M1 S5
Z ny + Z 9 + Z 9 S+ 9 9 S
beB beB beB

IN

Next we bound the number of pairs reported from below as a functigh &ince each pair of
points lying in buckeb is within distance- of every other, there ane,% pairs in buckeb alone
that are within distance of each other, and hence (considering just the pairs generated within
each bucket) we have> S.
Therefore we have

D <28 < 2k,

which completes the proof.

Lecture 2 7 Fall 2005

CMSC 754 Dave Mount

By combining this with the)(n) expected time needed to bucket the points, it follows that the total
expected running time i©(n + k).

A worthwhile exercise to consider at this point is the issue of the bucket widdow would changing

the value ofr affect the implementation of the algorithm and its efficiency? For example, if we used
buckets of size'/2 or 2r, would the above algorithm (after suitable modifications) have the same
asymptotic running time? Would buckets of size any constant tinvesrk?

Generalization to d dimensions: This bucketing algorithm is easy to extend to multiple dimensions. For
example, in dimension 2, we bucket points into a square grid in which each grid square is of side
lengthr. (As before, you might consider the question of what values of bucket sizes lead to a correct
and efficient algorithm.) The bucket index of a point (z,y) is a pairb(p) = (b(x),b(y)) =
(lz/r], y/r]). We apply a hash function that accepts two arguments. To generalize the algorithm,
for each point we consider the points in its surrounding 3 subgrid of buckets. By generalizing the
above arguments, it can be shown that the algorithm’s expected running tine is k). The details
are left as an exercise.

r\°
.J

r

Figure 5: Fixed radius nearest neighbor on the plane.

This example problem serves to illustrate some of the typical elements of computational geometry.
Geometry itself did not play a significant role in the problem, other than the relatively easy task of
computing distances. We will see examples later this semester where geometry plays a much more
important role. The major emphasis was on accounting for the algorithm’s running time. Also note
that, although we discussed the possibility of generalizing the algorithm to higher dimensions, we did
not treat the dimension as an asymptotic quantity. In fact, a more careful analysis reveals that this
algorithm’s running time increases exponentially with the dimension. (Can you see why?)

Lecture 2 8 Fall 2005

