
CMSC 754 Dave Mount

CMSC 754: Lecture 2
Geometric Basics and Fixed-Radius Near Neighbors

Tuesday, Sep 6, 2005

The material on affine and Euclidean geometry will not be covered in lecture, but is presented here just in
case you are interested in refreshing your knowledge on how basic geometric entities are represented and
manipulated.

Reading: The material on the Fixed-Radius Near Neighbor problem is taken from the paper: “The
complexity of finding fixed-radius near neighbors,” by J. L. Bentley, D. F. Stanat, and E. H. Williams,
Information Processing Letters, 6(6), 1977, 209–212.

Geometry Basics: As we go through the semester, we will introduce much of the geometric facts and com-
putational primitives that we will be needing. For the most part, we will assume that any geometric
primitive involving a constant number of elements of constant complexity can be computed inO(1)
time, and we will not concern ourselves with how this computation is done. (For example, given three
non-collinear points in the plane, compute the unique circle passing through these points.) Nonethe-
less, for a bit of completeness, let us begin with a quick review of the basic elements of affine and
Euclidean geometry.

There are a number of different geometric systems that can be used to express geometric algorithms:
affine geometry, Euclidean geometry, and projective geometry, for example. This semester we will be
working almost exclusively with affine and Euclidean geometry. Before getting to Euclidean geometry
we will first define a somewhat more basic geometry called affine geometry. Later we will add one
operation, called an inner product, which extends affine geometry to Euclidean geometry.

Affine Geometry: An affine geometry consists of a set ofscalars(the real numbers), a set ofpoints, and
a set offree vectors(or simply vectors). Points are used to specify position. Free vectors are used
to specify direction and magnitude, but have no fixed position in space. (This is in contrast to linear
algebra where there is no real distinction between points and vectors. However this distinction is
useful, since the two are conceptually quite different.)

The following are the operations that can be performed on scalars, points, and vectors. Vector opera-
tions are just the familiar ones from linear algebra. It is possible to subtract two points. The difference
p − q of two points results in a free vector directed fromq to p. It is also possible to add a point to
a vector. In point-vector additionp + v results in the point which is translated byv from p. Letting
S denote an generic scalar,V a generic vector andP a generic point, the following are the legal
operations in affine geometry:

S · V → V scalar-vector multiplication

V + V → V vector addition

P − P → V point subtraction

P + V → P point-vector addition

Lecture 2 1 Fall 2005

CMSC 754 Dave Mount

point−vector additionvector addition point subtraction

p+v

vp
p

q

p−q
v

u+v
u

Figure 1: Affine operations.

A number of operations can be derived from these. For example, we can define the subtraction of two
vectors~u− ~v as~u + (−1) · ~v or scalar-vector division~v/α as(1/α) · ~v providedα 6= 0. There is one
special vector, called thezero vector,~0, which has no magnitude, such that~v +~0 = ~v.

Note that it isnot possible to multiply a point times a scalar or to add two points together. However
there is a special operation that combines these two elements, called anaffine combination. Given two
pointsp0 andp1 and two scalarsα0 andα1, such thatα0 + α1 = 1, we define the affine combination

aff(p0, p1; α0, α1) = α0p0 + α1p1 = p0 + α1(p1 − p0).

Note that the middle term of the above equation is not legal given our list of operations. But this is
how the affine combination is typically expressed, namely as the weighted average of two points. The
right-hand side (which is easily seen to be algebraically equivalent) is legal. An important observation
is that, if p0 6= p1, then the pointaff(p0, p1; α0, α1) lies on the line joiningp0 andp1. As α1 varies
from −∞ to +∞ it traces out all the points on this line.

aff(p,q; 1/2,1/2)

q

p

aff(p,q; 3/2, −1/2)

aff(p,q; 1, 0)

aff(p,q; 0, 1)

Figure 2: Affine combination.

In the special case where0 ≤ α0, α1 ≤ 1, aff(p0, p1; α0, α1) is a point that subdivides the line
segmentp0p1 into two subsegments of relative sizesα1 to α0. The resulting operation is called a
convex combination, and the set of all convex combinations traces out the line segmentp0p1.

It is easy to extend both types of combinations to more than two points, by adding the condition that
the sumα0 + α1 + α2 = 1.

aff(p0, p1, p2; α0, α1, α2) = α0p0 + α1p1 + α2p2 = p0 + α1(p1 − p0) + α2(p2 − p0).

The set of all affine combinations of three (non-collinear) points generates a plane. The set of all
convex combinations of three points generates all the points of the triangle defined by the points.
These shapes are called theaffine spanor affine closure, andconvex closureof the points, respectively.

Euclidean Geometry: In affine geometry we have provided no way to talk about angles or distances. Eu-
clidean geometry is an extension of affine geometry which includes one additional operation, called
the inner product, which maps two real vectors (not points) into a nonnegative real. One important
example of an inner product is thedot product, defined as follows. Suppose that thed-dimensional

Lecture 2 2 Fall 2005

CMSC 754 Dave Mount

vectors~u and~v are represented by the (nonhomogeneous) coordinate vectors(u1, u2, . . . , ud) and
(v1, v2, . . . , vd). Define

~u · ~v =
d∑

i=1

uivi,

The dot product is useful in computing the following entities.

Length: of a vector~v is defined to be‖~v‖ =
√

~v · ~v.

Normalization: Given any nonzero vector~v, define thenormalizationto be a vector of unit length
that points in the same direction as~v. We will denote this bŷv:

v̂ =
~v

‖~v‖ .

Distance between points:Denoted either dist(p, q) or ‖pq‖ is the length of the vector between them,
‖p − q‖.

Angle: between two nonzero vectors~u and~v (ranging from 0 toπ) is

ang(~u,~v) = cos−1

(
~u · ~v

‖~u‖‖~v‖
)

= cos−1(û · v̂).

This is easy to derive from the law of cosines.

Orientation of Points: In order to make discrete decisions, we would like a geometric operation that op-
erates on points in a manner that is analogous to the relational operations(<, =, >) with numbers.
There does not seem to be any natural intrinsic way to compare two points ind-dimensional space,
but there is a natural relation between ordered(d + 1)-tuples of points ind-space, which extends the
notion of binary relations in 1-space, calledorientation.

Given an ordered triple of points〈p, q, r〉 in the plane, we say that they havepositive orientationif they
define a counterclockwise oriented triangle,negative orientationif they define a clockwise oriented
triangle, andzero orientationif they are collinear (which includes as well the case where two or more
of the points are identical). Note that orientation depends on the order in which the points are given.

negative zero
p

r

q
p=r

q

zero

rp

r

positive

q

p

q

Figure 3: Orientations of the ordered triple(p, q, r).

Orientation is formally defined as the sign of the determinant of the points given in homogeneous
coordinates, that is, by prepending a 1 to each coordinate. For example, in the plane, we define

Orient(p, q, r) = det


 1 px py

1 qx qy

1 rx ry


 .

Lecture 2 3 Fall 2005

CMSC 754 Dave Mount

Observe that in the 1-dimensional case, Orient(p, q) is justq − p. Hence it is positive ifp < q, zero if
p = q, and negative ifp > q. Thus orientation generalizes<, =, > in 1-dimensional space. Also note
that the sign of the orientation of an ordered triple is unchanged if the points are translated, rotated, or
scaled (by a positive scale factor). A reflection transformation, e.g.,f(x, y) = (−x, y), reverses the
sign of the orientation. In general, applying any affine transformation to the point alters the sign of
the orientation according to the sign of the matrix used in the transformation.

This generalizes readily to higher dimensions. For example, given an ordered 4-tuple points in 3-
space, we can define their orientation as being either positive (forming a right-handed screw), negative
(a left-handed screw), or zero (coplanar). It can be computed as the sign of the determinant of an
appropriate4 × 4 generalization of the above determinant. This can be generalized to any ordered
(d + 1)-tuple of points ind-space.

Areas and Angles: The orientation determinant, together with the Euclidean norm can be used to compute
angles in the plane. This determinant Orient(p, q, r) is equal to twice the signed area of the triangle
4pqr (positive if CCW and negative otherwise). Thus the area of the triangle can be determined
by dividing this quantity by 2. In general in dimensiond the area of the simplex spanned byd + 1
points can be determined by taking this determinant and dividing byd! = d · (d − 1) · · · 2 · 1. Given
the capability to compute the area of any triangle (or simplex in higher dimensions), it is possible
to compute the volume of any polygon (or polyhedron), given an appropriate subdivision into these
basic elements. (Such a subdivision does not need to be disjoint. The simplest methods that I know
of use a subdivision into overlapping positively and negatively oriented shapes, such that the signed
contribution of the volumes of regions outside the object cancel each other out.)

Recall that the dot product returns the cosine of an angle. However, this is not helpful for distinguish-
ing positive from negative angles. The sine of the angleθ = ∠pqr (the signed angled from vector
p − q to vectorr − q) can be computed as

sin θ =
Orient(q, p, r)

‖p − q‖ · ‖r − q‖ .

(Notice the order of the parameters.) By knowing both the sine and cosine of an angle we can unam-
biguously determine the angle.

Fixed-Radius Near Neighbor Problem: As a warm-up exercise for the course, we begin by considering
one of the oldest results in computational geometry. This problem was considered back in the mid
70’s, and is a fundamental problem involving a set of points in dimensiond. We will consider the
problem in the plane, but the generalization to higher dimensions will be straightforward. The solution
also illustrates a common class of algorithms in CG, which are based on grouping objects into buckets
that are arranged in a square grid.

We are given a setP of n points in the plane. It will be our practice throughout the course to assume
that each pointp is represented by its(x, y) coordinates, denoted(px, py). Recall that the Euclidean
distance between two pointsp andq, denoted‖pq‖, is

‖pq‖ =
√

(px − qx)2 + (py − qy)2.

Given the setP and a distancer > 0, our goal is to report all pairs of distinct pointsp, q ∈ P such
that‖pq‖ ≤ r. This is called thefixed-radius near neighbor (reporting) problem.

Lecture 2 4 Fall 2005

CMSC 754 Dave Mount

Reporting versus Counting: We note that this is areportingproblem, which means that our objective is to
report all such pairs. This is in contrast to the correspondingcountingproblem, in which the objective
is to return a count of the number of pairs satisfying the distance condition.

It is usually easier to solve reporting problems optimally than counting problems. This may seem
counterintuitive at first (after all, if you can report, then you can certainly count). The reason is that
we know that any algorithm that reports some numberk of pairs must take at leastΩ(k) time. Thus if
k is large, a reporting algorithm has the luxury of being able to run for a longer time and still claim to
be optimal. In contrast, we cannot apply such a lower bound to a counting algorithm.

The approach described here seems to work only for the reporting case. There is a more efficient
solution to the counting problem, but this requires more sophisticated methods.

Simple Observations: To begin, let us make a few simple observations. This problem can easily be solved
in O(n2) time, by simply enumerating all pairs of distinct points and computing the distance between
each pair. The number of distinct pairs ofn points is(

n

2

)
=

n(n − 1)
2

.

Lettingk denote the number of pairs that reported, our goal will be to find an algorithm whose running
time is (nearly) linear inn andk, ideallyO(n + k). This will be optimal, since any algorithm must
take the time to read all the input and print all the results. (This assumes a naive representation of the
output. Perhaps there are more clever ways in which to encode the output, which would require less
thanO(k) space.)

To gain some insight to the problem, let us consider how to solve the 1-dimensional version, where
we are just given a set ofn points on the line, say,x1, x2, . . . , xn. In this case, one solution would be
to first sort the values in increasing order. Let suppose we have already done this, and so:

x1 < x2 < . . . < xn.

Now, for i running from 1 ton, we consider the successive pointsxi+1, xi+2, xi+3, and so on, until
we first find a point whose distance exceedsr. We reportxi together with all succeeding points that
are within distancer.

x3 x4 x5 x6

r

2x1 x

Figure 4: Fixed radius nearest neighbor on the line.

The running time of this algorithm involves theO(n log n) time needed to sort the points and the time
required for distance computations. Letki denote the number of pairs generated when we visitpi.
Observe that the processing ofpi involveski + 1 distance computations (one additional computation
for the points whose distance exceedsr). Thus, up to constant factors, the total running time is:

T (n, k) = n log n +
n∑

i=1

(ki + 1) = n log n + n +
n∑

i=1

ki

= n log n + n + k = O(k + n log n).

Lecture 2 5 Fall 2005

CMSC 754 Dave Mount

This is close to theO(k + n) time we were hoping for. It seems that any approach based on sorting
is doomed to take at leastΩ(n log n) time. So, if we are to improve upon this, we cannot sort. But is
sorting really necessary? Let us consider an approach based on bucketing.

1-dimensional Solution with Bucketing: Rather than sorting the points, suppose that we subdivide the line
into intervals of lengthr. In particular, we can take the line to be composed of an infinite collection
of half-open intervals:

. . . , [−3r,−2r), [−2r,−r), [−r, 0), [0, r), [r, 2r), [2r, 3r), . . .

We refer to these disjoint intervals asbuckets. Given the interval[br, (b + 1)r), its bucket indexis
the integerb. Given any pointx, it is easy to see that the index of the containing bucket is just
b(x) = bx/rc. Thus, inO(n) time we can associate then points ofP with a set ofn integer bucket
indices,b(x) for eachx ∈ P . Although there are an infinite number of buckets, at mostn will be
occupied, meaning that they contain at least one point ofP .

There are a number of ways to organize the occupied buckets. They could be sorted, but then we are
back toO(n log n) time. Since bucket indices are integers, a better approach is to store the occupied
bucket indices in ahash table. Recall from basic data structures that a hash table is a data structure
that supports the following operations inO(1) expected time:

insert(o, x): Insert objecto with key valuex. We allow multiple objects to be inserted with the same
key.

L = find(x): Return a listL of references to objects having key valuex. This operation takesO(1 +
|L|) expected time. If no keys have this value, then an empty list is returned.

remove(o, x): Remove the object indicated by referenceo, having key valuex from the table.

Each point is associated with the key value given by its bucket indexb = bx/rc. Thus inO(1)
expected time, we can determine which bucket contains a given point and look this bucket up in the
hash table.

The fact that the running time is in the expected case, rather than worst case is a bit unpleasant. How-
ever, it can be shown that by using a good randomized hash function, the probability that the total
running time is worse thanO(n) can be made arbitrarily small. If the algorithm performs signifi-
cantly more than the expected number of computations, we can simply chose a different random hash
function and try again. This will lead to a very practical solution.

How does bucketing help? Observe that if pointx lies in bucketb, then any successors that lie within
distancer must lie either in bucketb or in b + 1. This suggests the straightforward solution shown
below.

Fixed-Radius Near Neighbor on the Line by Bucketing

(1) For eachx ∈ P , insertx in the hash table with the key valueb(x).

(2) For eachx ∈ P do the following:

(a) Letb(x) be the bucket containingx.

(b) Enumerate all the points of bucketsb(x) andb(x) + 1, and for each pointx′ ∈ b(x) ∪ b(x) + 1 such that
0 < x′ − x ≤ r, output the pair(x, x′).

Lecture 2 6 Fall 2005

CMSC 754 Dave Mount

Note that, in order to avoid duplicates we only report pairs(x, x′) wherex′ > x. The key question is
determining the time complexity of this algorithm is how many distance computations are performed
in step (2b). We compare each point in bucketb with all the points in bucketsb andb + 1. However,
not all of these distance computations will result in a pair of points whose distance is withinr. Might
it be that we waste a great deal of time in performing computations for which we receive no benefit?
The lemma below shows that we perform no more than a constant factor times as many distance
computations and pairs that are produced.

It will simplify things considerably if, rather than counting distinct pairs of points, we simply count
all (ordered) pairs of points that lie within distancer of each other. Thus each pair of points will be
counted twice,(p, q) and(q, p). Note that this includes reporting each point as a pair(p, p) as well,
since each point is within distancer of itself. This does not affect the asymptotic bounds, since the
number of distinct pairs is smaller by a factor of roughly1/2.

Lemma: Let k denote the number of (not necessarily distinct) pairs of points ofP that are within
distancer of each other. LetD denote the total number distance computations made in step (2b)
of the above algorithm. ThenD ≤ 2k.

Proof: We will make use of the following inequality in the proof:

xy ≤ x2 + y2

2
.

This follows by expanding the obvious inequality(x − y)2 ≥ 0.
Let B denote the (infinite) set of buckets. For any bucketb ∈ B, let b + 1 denote its successor
bucket on the line, and letnb denote the number of points ofP in b. Define

S =
∑
b∈B

n2
b .

First we bound the total number of distance computationsD as a function ofS. Each point in
bucketb computes the distance to every other point in bucketb and every point in bucketb + 1,
and hence

D =
∑
b∈B

nb(nb + nb+1) =
∑
b∈B

n2
b + nbnb+1 =

∑
b∈B

n2
b +

∑
b∈B

nbnb+1

≤
∑
b∈B

n2
b +

∑
b∈B

n2
b + n2

b+1

2

=
∑
b∈B

n2
b +

∑
b∈B

n2
b

2
+

∑
b∈B

n2
b+1

2
= S +

S

2
+

S

2
= 2S.

Next we bound the number of pairs reported from below as a function ofS. Since each pair of
points lying in bucketb is within distancer of every other, there aren2

b pairs in bucketb alone
that are within distancer of each other, and hence (considering just the pairs generated within
each bucket) we havek ≥ S.
Therefore we have

D ≤ 2S ≤ 2k,

which completes the proof.

Lecture 2 7 Fall 2005

CMSC 754 Dave Mount

By combining this with theO(n) expected time needed to bucket the points, it follows that the total
expected running time isO(n + k).

A worthwhile exercise to consider at this point is the issue of the bucket widthr. How would changing
the value ofr affect the implementation of the algorithm and its efficiency? For example, if we used
buckets of sizer/2 or 2r, would the above algorithm (after suitable modifications) have the same
asymptotic running time? Would buckets of size any constant timesr work?

Generalization tod dimensions: This bucketing algorithm is easy to extend to multiple dimensions. For
example, in dimension 2, we bucket points into a square grid in which each grid square is of side
lengthr. (As before, you might consider the question of what values of bucket sizes lead to a correct
and efficient algorithm.) The bucket index of a pointp : (x, y) is a pairb(p) = (b(x), b(y)) =
(bx/rc , by/rc). We apply a hash function that accepts two arguments. To generalize the algorithm,
for each point we consider the points in its surrounding3× 3 subgrid of buckets. By generalizing the
above arguments, it can be shown that the algorithm’s expected running time isO(n+ k). The details
are left as an exercise.

r

Figure 5: Fixed radius nearest neighbor on the plane.

This example problem serves to illustrate some of the typical elements of computational geometry.
Geometry itself did not play a significant role in the problem, other than the relatively easy task of
computing distances. We will see examples later this semester where geometry plays a much more
important role. The major emphasis was on accounting for the algorithm’s running time. Also note
that, although we discussed the possibility of generalizing the algorithm to higher dimensions, we did
not treat the dimension as an asymptotic quantity. In fact, a more careful analysis reveals that this
algorithm’s running time increases exponentially with the dimension. (Can you see why?)

Lecture 2 8 Fall 2005

