
Part I

Subset Sum

Subset Sum

Subset Sum
Instance: X = {x1, . . . , xn} – n integer positive num-
bers, t - target number
Question: Is there a subset of X such the sum of its
elements is t?

M: Max value
input numbers.

R.T. O
(
Mn2

)
.

SolveSubsetSum (X, t, M)
b[0 . . .Mn] - boolean array init to false.

// b[x] is true if x can be realized
// as a subset of X.

b[0]← true.
for i = 1, . . . , n do

for j = Mn down to xi do
b[j]← b[j − xi] ∨ b[j]

return b[t]

Subset Sum
Efficient algorithm???

1. Algorithm solving Subset Sum in O(Mn2).
2. M might be prohibitly large...
3. if M = 2n =⇒ algorithm is not polynomial time.
4. Subset Sum is NPC.
5. Still want to solve quickly even if M huge.
6. Optimization version:

Subset Sum Optimization
Instance: (X, t): A set X of n positive integers,
and a target number t.
Question: The largest number γopt one can repre-
sent as a subset sum of X which is smaller or equal
to t.

Subset Sum
Two-approximation

Lemma
1. (X, t); Given instance of Subset Sum. γopt ≤ t: Opt.
2. =⇒ Compute legal subset with sum ≥ γopt/2.
3. Running time O(n log n).

Proof.
1. Sort numbers in X in decreasing order.
2. Greedily - add numbers from largest to smallest (if

possible).
3. s: Generates sum.
4. u: First rejected number. s ′: sum before rejection.
5. s ′ > u > 0, s ′ < t, and s ′ + u > t =⇒

t < s ′ + u < s ′ + s ′ = 2s ′ =⇒ s ′ ≥ t/2.

Polynomial Time Approximation Schemes
Definition (PTAS)
PROB: Maximization problem.
ε > 0: approximation parameter.
A(I, ε) is a polynomial time approximation scheme
(PTAS) for PROB:

1. ∀I: (1− ε)
∣∣∣opt(I)

∣∣∣ ≤ ∣∣∣A(I, ε)
∣∣∣ ≤ ∣∣∣opt(I)

∣∣∣ ,
2. |opt(I)|: opt price,
3. |A(I, ε)|: price of solution of A.
4. A running time polynomial in n for fixed ε.

For minimization problem:
|opt(I)| ≤ |A(I, ε)| ≤ (1 + ε)|opt(I)|.

Polynomial Time Approximation Schemes
1. Example: Approximation algorithm with running time

O(n1/ε) is a PTAS.
Algorithm with running time O(1/εn) is not.

2. Fully polynomial...
Definition (FPTAS)
An approximation algorithm is fully polynomial time
approximation scheme (FPTAS) if it is a PTAS, and its
running time is polynomial both in n and 1/ε.

3. Example: PTAS with running time O(n1/ε) is not an
FPTAS.

4. Example: PTAS with running time O(n2/ε3) is an
FPTAS.

Approximating Subset Sum

Subset Sum Approx
Instance: (X, t, ε): A set X of n positive integers, a
target number t, and parameter ε > 0.
Question: A number z that one can represent as a subset
sum of X , such that (1− ε)γopt ≤ z ≤ γopt ≤ t.

Approximating Subset Sum
Looking again at the exact algorithm

ExactSubsetSum(S, t)
n ← |S|
P0 ← {0}
for i = 1 . . . n do

Pi ← Pi−1 ∪ (Pi−1 + xi)
Remove from Pi all elements > t

return largest element in Pn

1. S = {a1, . . . , an}
x + S = {a1 + x, a2 + x, . . . an + x}

2. Lists might explode in size.

Trim the lists...

Trim(L′, δ)
L← Sort(L′)
L = 〈y1 . . . ym〉
curr ← y1
Lout ← {y1}
for i = 2 . . .m do

if yi > curr · (1 + δ)
Append yi to Lout
curr ← yi

return Lout

Definition
For two positive real
numbers z ≤ y , the
number y is a
δ-approximation to z if

y
1 + δ

≤ z ≤ y .

Observation
If x ∈ L′ then there exists a
number y ∈ Lout such that
y ≤ x ≤ y(1 + δ), where
Lout ← Trim(L′, δ).

Trim the lists...
Trim(L′, δ)

L← Sort(L′)
L = 〈y1 . . . ym〉
curr ← y1
Lout ← {y1}
for i = 2 . . .m do

if yi > curr · (1 + δ)
Append yi to Lout
curr ← yi

return Lout

ApproxSubsetSum(S, t)
// S = {x1, . . . , xn},
// x1 ≤ x2 ≤ . . . ≤ xn
n ← |S|, L0 ← {0}, δ = ε/2n
for i = 1 . . . n do

Ei ← Li−1 ∪ (Li−1 + xi)
Li ← Trim(Ei , δ)
Remove from Li elems > t.

return largest element in Ln

Analysis
1. Ei list generated by algorithm in i th iteration.
2. Pi : list of numbers (no trimming).

Claim
For any x ∈ Pi there exists y ∈ Li such that
y ≤ x ≤ (1 + δ)iy .

Proof
1. If x ∈ P1 then follows by observation above.
2. If x ∈ Pi−1 =⇒ (induction) ∃y ′ ∈ Li−1 s.t.

y ′ ≤ x ≤ (1 + δ)i−1y ′.
3. By observation ∃y ∈ Li s.t. y ≤ y ′ ≤ (1 + δ)y .

Therefore

y ≤ y ′ ≤ x ≤ (1 + δ)i−1y ′ ≤ (1 + δ)iy.

Proof continued
Proof continued

1. If x ∈ Pi \ Pi−1 =⇒ x = α+ xi , for some α ∈ Pi−1.
2. By induction, ∃α′ ∈ Li−1 s.t. α′ ≤ α ≤ (1 + δ)i−1α′.

3. Thus, α′ + xi ∈ Ei .
4. ∃x ′ ∈ Li s.t. x ′ ≤ α′ + xi ≤ (1 + δ)x ′.
5. Thus,

x ′ ≤ α′ + xi ≤ α+ xi = x ≤ (1 + δ)i−1α′ + xi ≤
(1 + δ)i−1(α′ + xi) ≤ (1 + δ)ix ′.

Running time of ApproxSubsetSum
Lemma
For x ∈ [0, 1], it holds ex/2 ≤ (1 + x).

Lemma
For 0 < δ < 1, and x ≥ 1, we have

log1+δ x ≤
2 ln x
δ

= O
(

ln x
δ

)
.

See notes for a proof of lemmas.

Running time of ApproxSubsetSum
Observation
In a list generated by Trim, for any number x, there are no
two numbers in the trimmed list between x and (1 + δ)x.

Lemma
|Li | = O

(
(n/ε2) log n

)
, for i = 1, . . . , n.

Running time of ApproxSubsetSum
Proof.

1. Li−1 + xi ⊆ [xi , ixi].
2. Trimming Li−1 + xi results in list of size

log1+δ
ixi

xi
= O

(
ln i
δ

)
= O

(
ln n
δ

)
,

3. Now, δ = ε/2n, and

|Li | ≤ |Li−1|+ O
(

ln n
δ

)
≤ |Li−1|+ O

(
n ln n
ε

)

= O
(

n2 log n
ε

)
.

Running time of ApproxSubsetSum
Lemma
The running time of ApproxSubsetSum is O

(
n3

ε
log2 n

)
.

Proof.
1. Running time of ApproxSubsetSum dominated by total

length of L1, . . . , Ln.

2. Above lemma implies
∑

i
|Li | = O

(
n3

ε
log n

)
.

3. Trim sorts lists. i th iteration R.T. O(|Li | log |Li |).
4. Overall, R.T. O(

∑
i |Li | log |Li |) = O

(
n3

ε
log2 n

)
.

ApproxSubsetSum
Theorem
ApproxSubsetSum returns u ≤ t, s.t.
γopt
1+ε ≤ u ≤ γopt ≤ t,
γopt: opt solution.
Running time is O

(
(n3/ε) log2 n

)
.

Proof.
1. Running time from above.
2. γopt ∈ Pn: optimal solution.
3. ∃z ∈ Ln, such that z ≤ opt ≤ (1 + δ)nz
4. (1 + δ)n = (1 + ε/2n)n ≤ eε/2 ≤ 1 + ε, since

1 + x ≤ ex for x ≥ 0.
5. γopt/(1 + ε) ≤ z ≤ opt ≤ t.

	Subset Sum
	On the complexity of -approximation algorithms

