Part |

Subset Sum

Subset Sum

Subset Sum

Instance: X = {xi1,...,X,} — n integer positive num-
bers, t - target number

Question: Is there a subset of X such the sum of its
elements is t?

Subset Sum
Efficient algorithm?77?
1. Algorithm solving Subset Sum in O(Mn?).
M might be prohibitly large...
if M = 2" = algorithm is not polynomial time.
Subset Sum is NPC.
Still want to solve quickly even if M huge.

o Ok W

Optimization version:

Subset Sum Optimization

Instance: (X, t): A set X of n positive integers,
and a target number t.

Question: The largest number ~,p¢ ONe can repre-
sent as a subset sum of X which is smaller or equal
to t.

SolveSubsetSum (X, t, M)
b[0...Mn] - boolean array init to false.
M: Max valle // b[x] is true if x can be realized
input numbers. // as a subset of X.
] b[0] < true.
fori=1,...,n do
2 ’)
RT. O(Mn : for j = Mn down to x; do
b[j] < b[j — x;] Vv b[j]
return b[t]
Subset Sum
Two-approximation
Lemma

1. (X, t); Given instance of Subset Sum. ~op < t: Opt.
2. == Compute legal subset with sum > ~opt /2.
3. Running time O(nlog n).

Proof.

1. Sort numbers in X in decreasing order.

2. Greedily - add numbers from largest to smallest (if
possible).

3. s: Generates sum.
4. u: First rejected number. s’: sum before rejection.

58§ >u>0s <t ands' +u>t —
t<s'4+u<s+s =2 = s >t/2

Polynomial Time Approximation Schemes

Definition (PTAS)

PROB: Maximization problem.
g€ > 0: approximation parameter.

A(1, €) is a polynomial time approximation scheme
(PTAS) for PROB:

L VI (1 =) |opt(/)| < |A(1,¢)| < |opt())
2. |opt(/)|: opt price,
3. |AA(l,€)|: price of solution of A.

4. A running time polynomial in n for fixed e.

9

For minimization problem:
lopt(/)| < [A(l,€)| < (1 + €)[opt(/)].

Polynomial Time Approximation Schemes

1. Example: Approximation algorithm with running time
O(n'/¢) is a PTAS.
Algorithm with running time O(1/&") is not.

2. Fully polynomial...

Definition (FPTAS)

An approximation algorithm is fully polynomial time
approximation scheme (FPTAS) if it is a PTAS, and its
running time is polynomial both in n and 1/e.
3. Example: PTAS with running time O(n'/¢) is not an
FPTAS.
4. Example: PTAS with running time O(n?/&3) is an
FPTAS.

Approximating Subset Sum

Subset Sum Approx

Instance: (X, t,e): A set X of n positive integers, a
target number t, and parameter € > 0.

Question: A number z that one can represent as a subset
sum of X, such that (1 — &)Yopt < Z < Yopt < L.

Approximating Subset Sum

Looking again at the exact algorithm

ExactSubsetSum (S, t)
n <« |S|
Py +— {0}
fori=1...n do
P; « Pi_1 U (Pi—1 + xi)
Remove from P; all elements > t
return largest element in P,

1. §= {31,...,3,,}
x+S={a+x,a+x,...a, + x}
2. Lists might explode in size.

Trim the lists...
Definition
- or two positive real

TnmlEL:—,égort(L’) numbers z < y, the
L= (y1--.ym) number y is a
curr + y; d-approximation to z if
Loyt <+ {yl} L < z< y.
for i=2...m do 14+6 — —

if y; > curr-(1+9)
Append Yi to Lout
curr < y;
return L,,;

Observation
fx € L' then there exists a
number 'y € Ly, such that

y < x < y(1+9), where
Loy < Trim(L',).

Trim the lists...

Trim(L’,)

L + Sort(L’)

L= (y1- - ym)

curr < y1

Lour < {y1}

fori=2...m do

if yi > curr-(1+9)

Append y; to L,
curr < y;

return L,,;

ut

ApproxSubsetSum (S, t)
// S={x1,...,Xn},
// x1<x< ... < X
n<«|S|, Lo« {0}, 6 =¢/2n
for i=1...n do

Ei +— Li_1U(Li-1 + x;)

L; Trim(E,-, 6)

Remove from L; elems > t.
return largest element in L,

Analysis

1. E; list generated by algorithm in ith iteration.

2. P;: list of numbers (no trimming).

Claim

For any x € P; there exists y € L; such that

y <x < (1+49)y.
Proof
1. If x € P; then follows by

observation above.

2. If x € P,y = (induction) 3y’ € L;_; s.t.

y <x< (@149t
3. By observation dy € L; s
Therefore

ty <y <(1+9)y.

y<y <x<(1+9)7ly <(1+49)y.

Proof continued

Proof continued

1. Ifxe P\ Py = x=a+ x;, forsome a € P;_;.

ThUS, o + x; € E,'.

o w N

Thus,

By induction, 3o’ € Li_1st. o < a < (1+6) 1.

Ix" e Llist. X <o +x < (1+6)x.

X <ad+xi<a+xi=x< (1+6)i_1a’+x; <
Q+6) Yo + x) < (14 9)x. n

Running time of ApproxSubsetSum

Lemma
For x € [0,1], it holds e/ < (1 + x).

Lemma
For0 < 6 <1, and x > 1, we have

| < 2Inx 0 In x
o X = — .
146 X S 5 5

See notes for a proof of lemmas.

Running time of ApproxSubsetSum

Observation
In a list generated by Trim, for any number x, there are no
two numbers in the trimmed list between x and (1 4+)x.

Lemma
|L;| = O((n/ez)logn), fori=1,...,n.

Running time of ApproxSubsetSum

Proof.
L Lii + x; C [x;, ix;].
2. Trimming L;_; 4+ x; results in list of size

ix; Ini Inn
g =05) =9 %)

3. Now, d = &/2n, and

Inn ninn
|Li| < |Li—1| + 0(6) < |Liza| + 0(.

2)
_ O(n ogn) .
€

)

Running time of ApproxSubsetSum

Lemma ,
The running time of ApproxSubsetSum is O("? log? n).

Proof.

1. Running time of ApproxSubsetSum dominated by total
length of Ly,...,L,.

m
2. Above lemma implies > |L;| = O(log n).
i €

3. Trim sorts lists. ith iteration R.T. O(|L;|log |L;|).
4. Overall, RT. O(S; |Li| log |L;|) = O(log® n).

ApproxSubsetSum

Theorem

ApproxSubsetSum returns u < t, s.t.
et <u< Yopt <t,

1+¢

Yopt: Opt solution.
Running time is O((n3/s) log? n).

Proof.

1.

Running time from above.

2. Yopt € Pp: optimal solution.
3.
4. (1+6)"=(1+¢/2n)" < e/2 < 1+e¢,since

Jz € L, such that z < opt < (1 4+ 9)"z

1+x<e*forx>0.
Yopt/(1 +€) <z < opt < t.

	Subset Sum
	On the complexity of -approximation algorithms

