Part I Subset Sum

Subset Sum

Efficient algorithm???

- 1. Algorithm solving **Subset Sum** in $O(Mn^2)$.
- 2. *M* might be prohibitly large...
- 3. if $M = 2^n \implies$ algorithm is not polynomial time.
- 4. Subset Sum is NPC.
- 5. Still want to solve quickly even if **M** huge.
- 6. Optimization version:

Subset Sum Optimization

Instance: (X, t): A set X of *n* positive integers, and a target number t.

Question: The largest number γ_{opt} one can represent as a subset sum of **X** which is smaller or equal to **t**.

Subset Sum

Subset Sum

Instance: $X = \{x_1, \ldots, x_n\} - n$ integer positive numbers, t - target number **Question**: Is there a subset of X such the sum of its elements is t?

Subset Sum

Two-approximation

Lemma

- 1. (X, t); Given instance of Subset Sum. $\gamma_{opt} \leq t$: Opt.
- 2. \implies Compute legal subset with sum $\geq \gamma_{\rm opt}/2$.
- 3. Running time $O(n \log n)$.

Proof.

- 1. Sort numbers in **X** in decreasing order.
- 2. Greedily add numbers from largest to smallest (if possible).
- 3. s: Generates sum.
- 4. u: First rejected number. s': sum before rejection.
- 5. s' > u > 0, s' < t, and $s' + u > t \implies t < s' + u < s' + s' = 2s' \implies s' \ge t/2$.

Polynomial Time Approximation Schemes

$\mathsf{Definition}\;(\mathrm{PTAS})$

PROB: Maximization problem. $\varepsilon > 0$: approximation parameter. $\mathcal{A}(I, \varepsilon)$ is a *polynomial time approximation scheme* (**PTAS**) for **PROB**: 1. $\forall I$: $(1 - \varepsilon) |opt(I)| \le |\mathcal{A}(I, \varepsilon)| \le |opt(I)|$, 2. |opt(I)|: opt price, 3. $|\mathcal{A}(I, \varepsilon)|$: price of solution of \mathcal{A} . 4. \mathcal{A} running time polynomial in *n* for fixed ε .

For minimization problem: $|opt(I)| \leq |\mathcal{A}(I, \varepsilon)| \leq (1 + \varepsilon)|opt(I)|.$

Approximating Subset Sum

Subset Sum Approx

Instance: (X, t, ε) : A set X of n positive integers, a target number t, and parameter $\varepsilon > 0$. **Question**: A number z that one can represent as a subset sum of X, such that $(1 - \varepsilon)\gamma_{\text{opt}} \le z \le \gamma_{\text{opt}} \le t$.

Polynomial Time Approximation Schemes

- Example: Approximation algorithm with running time O(n^{1/ε}) is a PTAS. Algorithm with running time O(1/εⁿ) is not.
- 2. Fully polynomial...

Definition (FPTAS)

An approximation algorithm is *fully polynomial time approximation scheme* (FPTAS) if it is a PTAS, and its running time is polynomial both in n and $1/\varepsilon$.

- 3. Example: PTAS with running time $O(n^{1/\varepsilon})$ is not an FPTAS.
- 4. Example: PTAS with running time $O(n^2/\varepsilon^3)$ is an FPTAS.

Approximating Subset Sum

Looking again at the exact algorithm

ExactSubsetSum(S, t) $n \leftarrow |S|$ $P_0 \leftarrow \{0\}$ for i = 1...n do $P_i \leftarrow P_{i-1} \cup (P_{i-1} + x_i)$ Remove from P_i all elements > t return largest element in P_n

1.
$$S = \{a_1, \ldots, a_n\}$$

 $x + S = \{a_1 + x, a_2 + x, \ldots a_n + x\}$

2. Lists might explode in size.

Analysis

- 1. E_i list generated by algorithm in *i*th iteration.
- 2. P_i : list of numbers (no trimming).

Claim

For any $x \in P_i$ there exists $y \in L_i$ such that $y \leq x \leq (1 + \delta)^i y$.

Proof

- 1. If $x \in P_1$ then follows by observation above.
- 2. If $x \in P_{i-1} \implies$ (induction) $\exists y' \in L_{i-1}$ s.t. $y' \leq x \leq (1 + \delta)^{i-1} y'$.
- 3. By observation $\exists y \in L_i$ s.t. $y \leq y' \leq (1 + \delta)y$. Therefore

$$\mathbf{y} \leq \mathbf{y}' \leq \mathbf{x} \leq (1+\delta)^{i-1}\mathbf{y}' \leq (1+\delta)^i \mathbf{y}.$$

Proof continued

Proof continued

- 1. If $\mathbf{x} \in \mathbf{P}_i \setminus \mathbf{P}_{i-1} \implies \mathbf{x} = \alpha + \mathbf{x}_i$, for some $\alpha \in \mathbf{P}_{i-1}$.
- 2. By induction, $\exists \alpha' \in L_{i-1}$ s.t. $\alpha' \leq \alpha \leq (1+\delta)^{i-1} \alpha'$.
- 3. Thus, $\alpha' + x_i \in E_i$.
- 4. $\exists x' \in L_i \text{ s.t. } x' \leq \alpha' + x_i \leq (1 + \delta)x'.$
- 5. Thus, $\begin{aligned} \mathbf{x}' \leq \alpha' + \mathbf{x}_i \leq \alpha + \mathbf{x}_i = \mathbf{x} \leq (1+\delta)^{i-1}\alpha' + \mathbf{x}_i \leq (1+\delta)^{i-1}(\alpha' + \mathbf{x}_i) \leq (1+\delta)^i \mathbf{x}'. \end{aligned}$

Running time of ApproxSubsetSum

Lemma For $x \in [0, 1]$, it holds $e^{x/2} \leq (1 + x)$.

Lemma

For $\mathbf{0} < \delta < \mathbf{1}$, and $\mathbf{x} \geq \mathbf{1}$, we have

$$\log_{1+\delta} x \leq \frac{2\ln x}{\delta} = O\left(\frac{\ln x}{\delta}\right).$$

See notes for a proof of lemmas.

Running time of ApproxSubsetSum

Proof.

- 1. $L_{i-1} + x_i \subseteq [x_i, ix_i]$
- 2. Trimming $L_{i-1} + x_i$ results in list of size

$$\log_{1+\delta}\frac{ix_i}{x_i}=O\left(\frac{\ln i}{\delta}\right)=O\left(\frac{\ln n}{\delta}\right),$$

3. Now, $\delta = \varepsilon/2n$, and

$$\begin{aligned} |L_i| &\leq |L_{i-1}| + O\left(\frac{\ln n}{\delta}\right) \leq |L_{i-1}| + O\left(\frac{n\ln n}{\varepsilon}\right) \\ &= O\left(\frac{n^2\log n}{\varepsilon}\right). \end{aligned}$$

Running time of ApproxSubsetSum

Observation

In a list generated by **Trim**, for any number \mathbf{x} , there are no two numbers in the trimmed list between \mathbf{x} and $(1 + \delta)\mathbf{x}$.

Lemma $|L_i| = O((n/\varepsilon^2) \log n)$, for i = 1, ..., n.

Running time of ApproxSubsetSum

Lemma

The running time of **ApproxSubsetSum** is $O(\frac{n^3}{\epsilon} \log^2 n)$.

Proof.

- Running time of ApproxSubsetSum dominated by total length of L₁,..., L_n.
- 2. Above lemma implies $\sum_{i} |L_i| = O\left(\frac{n^3}{\varepsilon} \log n\right)$.
- 3. Trim sorts lists. *i*th iteration R.T. $O(|L_i| \log |L_i|)$.

4. Overall, R.T.
$$O(\sum_i |L_i| \log |L_i|) = O(\frac{n^3}{\varepsilon} \log^2 n)$$
.

ApproxSubsetSum

Theorem ApproxSubsetSum returns $u \leq t$, s.t. $\frac{\gamma_{\text{opt}}}{1+\varepsilon} \leq u \leq \gamma_{\text{opt}} \leq t$, γ_{opt} : opt solution. Running time is $O((n^3/\varepsilon) \log^2 n)$.

Proof.

- 1. Running time from above.
- 2. $\gamma_{opt} \in \boldsymbol{P_n}$: optimal solution.
- 3. $\exists z \in L_n$, such that $z \leq \text{opt} \leq (1 + \delta)^n z$
- 4. $(1 + \delta)^n = (1 + \varepsilon/2n)^n \le e^{\varepsilon/2} \le 1 + \varepsilon$, since $1 + x \le e^x$ for $x \ge 0$.

5.
$$\gamma_{\mathrm{opt}}/(1+\varepsilon) \leq z \leq \mathrm{opt} \leq t$$
.

