KAIST CS500

Satisfiability

Consider a set of boolean variables $x_1, x_2, \ldots x_n$.

A literal is either a boolean variable x_i or its negation $\neg x_i$.

A clause is a disjunction of literals. For example, $x_1 \lor x_2 \lor \neg x_4$ is a clause.

A formula in conjunctive normal form (CNF) is propositional formula which is a conjunction of clauses:

 $(x_1 \lor x_2 \lor \neg x_4) \land (x_2 \lor \neg x_3) \land x_5$

A CNF formula such that every clause has exactly 3 literals is a 3CNF formula.

$$(x_1 \lor x_2 \lor \neg x_4) \land (x_2 \lor \neg x_3 \lor x_1)$$

KAIST CS500

Importance of Satisfiability

- $\bullet~{\rm SAT}$ and ${\rm 3SAT}$ are basic constraint satisfaction problems.
- Many different problems can be reduced to SAT.
- Arise naturally in many applications involving hardware and software verification and correctness.
- As we will see, it is a fundamental problem in the theory of NP-completeness.

SAT:

Instance: A CNF formula ϕ . Question: Is there a truth assignment to the variables of ϕ such that ϕ evaluates to true?

3SAT: Instance: A 3CNF formula ϕ .

Question: Is there a truth assignment to the variables of ϕ such that ϕ evaluates to true?

 $(x_1 \lor x_2 \lor \neg x_4) \land (x_2 \lor \neg x_3) \land x_5$ is satisfiable; take $x_1, x_2, \ldots x_5$ to be all true

 $(x_1 \lor \neg x_2) \land (\neg x_1 \lor x_2) \land (\neg x_1 \lor \neg x_2) \land (x_1 \lor x_2)$ is not satisfiable.

KAIST CS500

 SAT and $\operatorname{3SAT}$

Clearly we have $3\mathrm{SAT} \leq \mathrm{SAT}$

But we also have $\rm Sat \leq 3 sat$

Given φ a CNF formula we create a 3CNF formula φ' such that

- φ is satisfiable iff φ' is satisfiable.
- φ' can be constructed from φ in time polynomial in $|\varphi|$.

Idea: if a clause of φ is not of length 3, replace it with several clauses of length exactly 3.

KAIST CS500

One and two literals

Clause with 2 literals: Let $c = \ell_1 \lor \ell_2$. Let u be a new variable and let

$$c' = (\ell_1 \lor \ell_2 \lor u) \land (\ell_1 \lor \ell_2 \lor \neg u).$$

Then c is satisfiable iff c' is satisfiable

Clause with 1 literal: Let $c = \ell_1$. Let u and v be new variables and let

> $c' = (\ell_1 \lor u \lor v) \land (\ell_1 \lor u \lor \neg v)$ $\land (\ell_1 \lor \neg u \lor v) \land (\ell_1 \lor \neg u \lor \neg v).$

Then c is satisfiable iff c^\prime is satisfiable

KAIST CS500

More than 3 literals

Let $c = \ell_1 \lor \cdots \lor \ell_k$. Let $u_1, \ldots u_{k-3}$ be new variables. Consider

 $c' = (\ell_1 \lor \ell_2 \lor u_1) \land$ $(\ell_3 \lor \neg u_1 \lor u_2) \land$ $(\ell_4 \lor \neg u_2 \lor u_3) \land$ $\cdots \land$ $(\ell_{k-2} \lor \neg u_{k-4} \lor u_{k-3}) \land$ $(\ell_{k-1} \lor \ell_k \lor \neg u_{k-3}).$

 \boldsymbol{c} is satisfiable if and only if \boldsymbol{c}' is satisfiable.

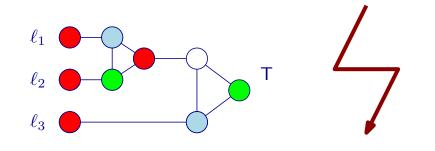
KAIST CS500	2SAT	KAIST CS500	3Sat	≤ 3 Coloring
What about 2SAT?		Reduction converts a formula ϕ in 3CNF into a graph G.		
It can be solved in polynomial time (even linear time).		ϕ is satisfiable iff G can be colored with three colors.		
Compare: 2Coloring	3Coloring			ruth gadget
$2 \mathrm{Sat}$	3Sat	$x_1 \neg x_1 x_2 \neg x_1$	x_2 x_3 $\neg x_3$	$x_n \neg x_n$
Easy	Hard	We have one variable gadget for each variable. x_i and $\neg x_i$ must have different colors. All x_i and $\neg x_i$ vertices are connected to N, so they cannot be blue. So either x_i is green (and $\neg x_i$ red), or x_i is red (and $\neg x_i$		

green).

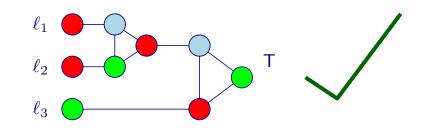
KAIST CS500

Clause gadgets

For each clause $c = \ell_1 \vee \ell_2 \vee \ell_3$ we build a gadget that can be colored iff at least one of the ℓ_i nodes is green.



For each clause $c = \ell_1 \lor \ell_2 \lor \ell_3$ we build a gadget that can be colored iff at least one of the ℓ_i nodes is green.

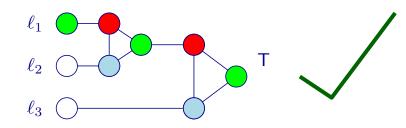


KAIST CS500

Clause gadgets

ause gaugets

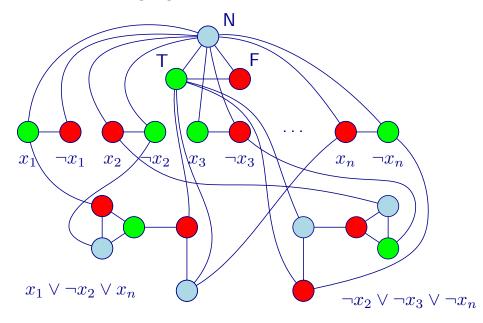
For each clause $c = \ell_1 \vee \ell_2 \vee \ell_3$ we build a gadget that can be colored iff at least one of the ℓ_i nodes is green.

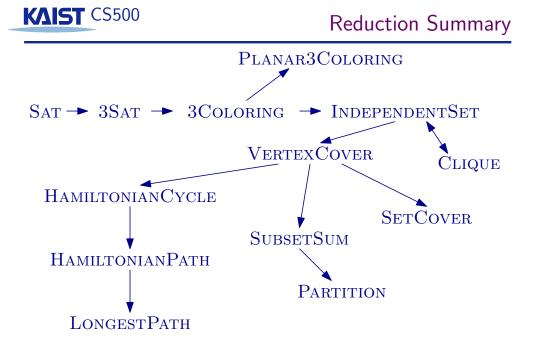


KAIST CS500

Complete construction

We create a clause gadget for each clause.





So ${\rm SAT}$ \leq X, for all these problems X.