
CS500 Reductions

We want to compare the complexity of different problems.

A reduction from problem X to problem Y means that
problem X is easier (or, more precisely, not harder) than
problem Y . We write

X ≤ Y

A reduction from X to Y means that if we have an algorithm
for Y , we can use it to find an algorithm for X.

So we can use reductions to find algorithms.

But we can also use reductions to show that we cannot find
algorithms for some problems. Such problems are called hard.

Also: Find the right reduction and win a million dollars!

CS500 Example 0

How do we solve IntervalScheduling?
(Given a set of intervals and a number k > 0, is there a
non-overlapping set of intervals of size at least k?)

Solution:
Reduce it to WeightedIntervalScheduling.

Give every interval weight one. There is a subset of intervals of
size ≥ k iff there is a subset of intervals of weight ≥ k.

And so we showed:

IntervalScheduling ≤WeightedIntervalScheduling

CS500 Example 1

How do we solve BipartiteMatching?
Given a bipartite graph G = (U ∪ V,E) and a number k > 0,
does G have a matching of size ≥ k?

Solution:
Reduce it to MaxFlow. G has a matching of size ≥ k iff
there is a flow from s to t of value ≥ k.

s t

BipartiteMatching ≤ MaxFlow

CS500 What is a reduction?

We work with decision problems

For decision problems X and Y , a reduction from X to Y is:
• an algorithm
• that takes an instance IX of X as input,
• and returns an instance IY of Y as output,
• such that the solution (that is, yes or no) of IY is the same

as the solution of IX .

(Actually this is only one type of reduction, but this is the one
we will use mostly.)

CS500 Using reductions to solve problems

Given a reduction R from X to Y and an algorithm A for Y :
We have an algorithm for X!

IX

Yes

No

What we need

CS500 Using reductions to solve problems

Given a reduction R from X to Y and an algorithm A for Y :
We have an algorithm for X!

IX

Yes

No

R AIY

What we have!

If R and A run in polynomial time, then the resulting
algorithm for X is also a polynomial-time algorithm.

We write X ≤ Y iff there is a polynomial-time reduction from
X to Y .

CS500 Independent Sets and Cliques

Given a graph G = (V,E), a subset S ⊆ V is:

• an independent set if no two vertices of S are connected by
an edge.

• a clique if every pair of vertices in S is connected by an
edge.

CS500 IndependentSet and Clique

IndependentSet:
Instance: A graph G and an integer k.
Question: Does G have an independent set of size ≥ k?

Clique:
Instance: A graph G and an integer k.
Question: Does G have a clique of size ≥ k?

We want to show

IndependentSet ≤ Clique

The reduction needs to convert an instance of
IndependentSet to an instance of Clique.

(Graph G, integer k) =⇒ (Graph G′, integer k′)

CS500 The reduction

We set G′ = G, the complement of G, and k′ = k.

G

Lemma: S is an independent set of G iff S is a clique of G.

So the solution to IY = (G, k) is the same as the solution to
IX = (G, k).

CS500 Reductions and hardness

Recall: Efficient algorithms are polynomial-time algorithms

Lemma: If X ≤ Y and Y has an efficient algorithm, then X
has an efficient algorithm.

• We believe IndependentSet has no efficient algorithm.

• We have IndependentSet ≤ Clique.

• If Clique had an efficient algorithm, so would
IndependentSet!

Lemma: If X ≤ Y and X does not have an efficient algorithm,
then Y cannot have an efficient algorithm.

CS500 Instance size

Yes

No

R AIYIX

Running time of R is p(|IX |), for a polynomial p.

Running time of A is q(|IY |), for a polynomial q.

What is |IY |?

Theorem: If R is a polynomial-time reduction, then the size of
IY produced from IX is polynomial in the size of IX .

Proof: R can write at most p(|IX |) bits, and so |IY | ≤ p(|IX |).

CS500 Polynomial-time reduction

A polynomial-time reduction (Karp reduction) from X to Y is
an algorithm R such that:
• Given an instance IX of X, R(IX) is an instance IY of Y .
• R runs in time polynomial in |IX |. This implies that |IY | is

polynomial in |IX |.
• The answer to IX is yes iff the answer to IY is yes.

Theorem: If X ≤ Y then a polynomial-time algorithm for Y
implies a polynomial-time algorithm for X.

Theorem: Reductions are transitive. X ≤ Y and Y ≤ Z
implies X ≤ Z.

Important: X ≤ Y does not imply Y ≤ X. Distinguish “from”
and “to” in a reduction.

CS500 VertexCover

Instance: A graph G = (V,E) and an integer k > 0.
Question: Does G have a vertex cover S of size ≤ k?
(S ⊂ V is a vertex cover if every e ∈ E has at least one
endpoint in S.)

Theorem: S ⊂ V is a vertex cover iff V \ S is an independent
set.

Reduction IndependentSet ≤ VertexCover:

If (G, k) is an instance of IndependentSet, then (G,n− k)
is an instance of VertexCover with the same answer.

Therefore: G has independent set of size ≥ k iff G has vertex
cover of size ≤ n− k.

CS500 SetCover

The SetCover problem:
Instance: A set U of n elements, a collection S1, S2, . . . , Sm of
subsets of U , and an integer k > 0.
Question: Is there a collection of at most k of these sets Si

whose union is equal to U?

Let U = {1, 2, 3, 4, 5, 6, 7}, k = 2 with

S1 = {3, 7} S2 = {3, 4, 5}
S3 = {1} S4 = {2, 4}
S5 = {5} S6 = {1, 2, 6, 7}

CS500 VertexCover ≤ SetCover

Given a VertexCover instance (G, k) we construct a
SetCover instance (U, {S1, . . . , Sm}, k′).

• k′ = k

• U = E

• For each v ∈ V , we have one set
Sv = {e | e is incident on v}.

The reduction can be computed in polynomial time.

G has a vertex cover of size k if and only if U, {Sv}v∈V has a
set cover of size k.

CS500 Example

a

b fg

c d e

1 2 4

5

3

6

CS500 Summary

We have proven the reductions:

IndependentSet ≤ VertexCover ≤ SetCover

IndependentSet ≤ Clique

