
CS500 NP

Sat 3Sat 3Coloring IndependentSet

Clique
VertexCover

HamiltonianCycle

HamiltonianPath
SubsetSum

LongestPath

SetCover

Planar3Coloring

Partition

What do all these problems have in common?

CS500 P and NP

For all of these problems the following is true: If the answer is
“yes”, then it is easy to show that this is indeed correct.

An algorithm C(·, ·) is a polynomial-time certifier for
problem X if there is a polynomial p(·) such that for every
instance IX we have: the solution to IX is “yes” if and only if
• there is a string t of length |t| ≤ p(|IX |) such that
• C(IX , t) returns “yes”, and
• C(·, ·) runs in polynomial time.

Note that if the answer to IX is “no”, there may be no
certificate for this.

• Let P be the class of all problems that have a polynomial
time algorithm.

• Let NP be the class of problems that have a
polynomial-time certifier.

CS500 P and NP

Clearly we have P ⊆ NP .

So far, nobody has been able to find a problem that is in NP,
but not in P.

So we do not know if P ( NP or P = NP .

This is one of the millenium problems, and worth a million
dollars.

Is it harder to find solutions than to check them?

If P = NP then “creativity can be automated”.

For instance, proofs for mathematical theorems can be found
automatically.

CS500 P, NP, and EXP

Let EXP be the class of problems that have an exponential
time algorithm. (Here, exponential time means O(np(n)), for
some polynomial p).

For example O(1.2n), O(2n), O(n!), O(2n
3

).

We have P ⊆ NP ⊆ EXP .

It is known that P 6= EXP .

Which of the two inclusions is proper?



CS500 NP-hardness and NP-completeness

A problem X is called NP-hard iff for every problem Y ∈ NP
we have

Y ≤ X.

In other words, X is harder than all problems in NP.

A problem X is called NP-complete iff
• X ∈ NP, and
• X is NP-hard

In other words, X is one of the hardest problems in NP.

Cook-Levin Theorem: Sat is NP-complete.

CS500 Why is NP-completeness interesting?

Theorem: Let X be an NP-complete problem. Then X has a
polynomial time algorithm if and only if P = NP .

Proof:

⇐: From P = NP and X ∈ NP follows that X has a
polynomial-time algorithm.

⇒: Consider any Y ∈ NP .

We have Y ≤ X. Since X has a polynomial-time algorithm,
this implies that Y has a polynomial-time algorithm.

Therefore Y ∈ P .

It follow NP ⊆ P , and therefore NP = P .

CS500 Why is NP-completeness interesting?

Theorem: Let X be an NP-complete problem. Then X has a
polynomial time algorithm if and only if P = NP .

Finding a polynomial time algorithm for one NP-complete
problem is equivalent to finding one for all problems in NP!

We believe P 6= NP , and so it is unlikely that an NP-complete
problem has an efficient algorithm.

At least many smart people have failed to find an algorithm for
these problems.

CS500 How to prove NP-completeness

To prove that a problem X is NP-complete, we need to
• show that X ∈ NP (by giving a polynomial-time certifier

for X)
• show that Y ≤ X for some NP-hard problem Y .

Hundreds and thousands of different problems from many
areas of science and engineering have been shown to be
NP-Complete .

It’s a surprisingly common phenomenon.

All the hard problems we studied are NP-complete, since there
is a reduction from Sat.



CS500 Why prove NP-completeness?

When you encounter a problem for which you cannot find an
efficient algorithm, you can prove that it is NP-complete.

• It shows to your boss/advisor that you are not too lazy to
find a good algorithm.

• A paper with a heuristic or approximation algorithm is
more likely to be accepted if you can show that the
problem is hard.

• It makes you feel good.

CS500 Examples

Register allocation: Assign variables to (at most) k registers
such that variables needed at the same time are not in the
same register.

Interference graph: Nodes are variables, with an edge when
variables are needed at the same time.

Register allocation is equivalent to coloring the graph with k
colors.

3Coloring ≤ k-RegisterAllocation,

for k ≥ 3.

CS500 Examples

Class room scheduling: Given n classes and their meeting
times, are k class rooms sufficient?

Again equivalent to k-Coloring.

Cellular telephone systems break up the frequency band into
small bands. A cell phone tower gets one band. If towers are
too close, they cannot get the same band.

The problem of assigning frequency bands to cell phone towers
reduces to k-Coloring.

CS500 Subset Sum and KnapSack

Subset Sum Problem: Given n integers a1, a2, ..., an and a
target B, is there a subset of S of {a1, ..., an} such that the
numbers in S add up precisely to B?

Knapsack: Given n items with item i having size si and profit
pi , a knapsack of capacity B, and a target profit P , is there a
subset S of items that can be packed in the knapsack and the
profit of S is at least P?

SubsetSum ≤ Knapsack



CS500 The input encoding matters

Subset Sum can be solved in O(nB) time using dynamic
programming (exercise for you).

This implies that problem is hard only when (some of)
numbers a1, a2, ..., an are exponentially large compared to n.

The input encoding matters! When input is encoded in unary,
the problem is in P .

Number problems of the above type are said to be weakly
NP-Complete .

CS500 Lecture Planning

We want to plan a sequence of ` guest lectures. There are n
possible speakers. In week i a subset Li of these speakers is
available.

Afterwards the students will do p projects about topics from
the lectures. Project j requires at least one of the speakers
from a subset Pj of the speakers.

Example: ` = 2, p = 3, n = 4 speakers.

L1 = {A,B,C}, L2 = {A,D}.

P1 = {B,C}, P2 = {A,B,D}, P3 = {C,D}.

LecturePlanning is clearly in NP. Is it also NP-hard?

CS500 NP-hardness proof

Reduction from 3Sat: For each variable xi, make two
lecturers xi and x̄i. In week i, we can choose between them:
Li = {xi, x̄i}.

Make a project for each clause!

Reduction from VertexCover: Given graph G = (V,E) and
k > 0, create a lecturer zv for each node v.

Set ` = k and let L1 = L2 = . . . = Lk = {zv | v ∈ V }.

Make a project j for each edge ej = (v, w), where
Pj = {zv, zw}.

More examples in the homework!


