Part I

Weighted vertex cover

Weighted vertex cover problem

\[G = (V, E) \]
Each vertex \(v \in V \): cost \(c_v \).
Compute a vertex cover of minimum cost.

1. vertex cover: subset of vertices \(V \) so each edge is covered.
2. \textbf{NP-Hard}
3. ...unweighted \textbf{Vertex Cover} problem.
4. ... write as an integer program (IP):
5. \(\forall v \in V : x_v = 1 \iff v \text{ in the vertex cover}. \)
6. \(\forall vu \in E : \text{covered. } \implies x_v \lor x_u \text{ true. } \implies x_v + x_u \geq 1. \)
7. minimize total cost: \(\min \sum_{v \in V} x_v c_v \).

Weighted vertex cover – rounding the LP

1. Optimal solution to this LP: \(\hat{x}_v \) value of var \(X_v, \forall v \in V \).
2. optimal value of LP solution is \(\hat{\alpha} = \sum_{v \in V} c_v \hat{x}_v. \)
3. optimal integer solution: \(x'_v, \forall v \in V \) and \(\alpha'_I \).
4. \textbf{Any valid solution to IP is valid solution for LP!}
5. \(\hat{\alpha} \leq \alpha'_I. \)
 Integral solution not better than \textbf{LP}.
6. Got fractional solution (i.e., values of \(\hat{x}_v \)).
7. Fractional solution is better than the optimal cost.
8. Q: How to turn fractional solution into a (valid!) integer solution?
9. Called \textbf{rounding}.

Weighted vertex cover

\[
\begin{align*}
\text{min} & \quad \sum_{v \in V} c_v x_v, \\
\text{such that} & \quad x_v \in \{0, 1\} \quad \forall v \in V \quad (1) \\
& \quad x_v + x_u \geq 1 \quad \forall vu \in E.
\end{align*}
\]

\[
\begin{align*}
\text{min} & \quad \sum_{v \in V} c_v x_v, \\
\text{s.t.} & \quad 0 \leq x_v \quad \forall v \in V, \\
& \quad x_v \leq 1 \quad \forall v \in V, \\
& \quad x_v + x_u \geq 1 \quad \forall vu \in E.
\end{align*}
\]
How to round?

1. consider vertex \(v \) and fractional value \(\hat{x}_v \).
2. If \(\hat{x}_v = 1 \) then include in solution!
3. If \(\hat{x}_v = 0 \) then do not include in solution.
4. if \(\hat{x}_v = 0.9 \) \(\implies \) LP considers \(v \) as being 0.9 useful.
5. The LP puts its money where its belief is...
6. ...\(\alpha \) value is a function of this “belief” generated by the LP.
7. Big idea: Trust LP values as guidance to usefulness of vertices.
8. Pick all vertices \(\geq \) threshold of usefulness according to LP.
9. \(S = \{ v \mid \hat{x}_v \geq 1/2 \} \).
10. Claim: \(S \) a valid vertex cover, and cost is low.
11. Indeed, edge cover as: \(\forall vu \in E \) have \(\hat{x}_v + \hat{x}_u \geq 1 \).
12. \(\hat{x}_v, \hat{x}_u \in (0, 1) \)
 \(\implies \hat{x}_v \geq 1/2 \) or \(\hat{x}_u \geq 1/2 \).
 \(\implies v \in S \) or \(u \in S \) (or both).
 \(\implies S \) covers all the edges of \(G \).

Cost of solution

- Cost of \(S \):
 \[
 c_S = \sum_{v \in S} c_v = \sum_{v \in S} 1 \cdot c_v \leq 2 \sum_{v \in S} \hat{x}_v \cdot c_v \leq 2 \sum_{v \in V} \hat{x}_v c_v = 2\alpha \leq 2\alpha',
 \]
 since \(\hat{x}_v \geq 1/2 \) as \(v \in S \).
 \(\alpha' \) is cost of the optimal solution \(\implies \)

Theorem

The Weighted Vertex Cover problem can be 2-approximated by solving a single LP. Assuming computing the LP takes polynomial time, the resulting approximation algorithm takes polynomial time.

The lessons we can take away

Or not - boring, boring, boring.

1. Weighted vertex cover is simple, but resulting approximation algorithm is non-trivial.
2. Not aware of any other 2-approximation algorithm does not use LP. (For the weighted case!)
3. Solving a relaxation of an optimization problem into a LP provides us with insight.
4. But... have to be creative in the rounding.