
CS500 Linear Programming

• Variables xj ∈ R for j ∈ {1, . . . , n}
• Maximize

∑
j cjxj

• Constraints
∑

j aijxj ≤ bi for i = 1, . . . ,m
• and xj ≥ 0 for all j.

Can be solved using the simplex algorithm.

Simplex has exponential running time in the worst case. (In
practice it seems to work well on most problems.)

CS500 Complexity of Linear Programming

Khachian 1979: ellipsoid method with weakly polynomial
running time.
(Running time is polynomial in the number of bits of the input,
not on the RealRAM model).

Useless in practice.

Karmakar 1984: interior-point method

Also weakly polynomial, but quite useful in practice.

Ongoing arms race between simplex and interior-point
methods.

The big open question: Is there a strongly polynomial
algorithm for linear programming?

CS500 Max-flow and linear programming

We have MaxFlow ≤P lp.

Variable xe for the flow on edge e.

Constraints:

• xe ≥ 0

• xe ≤ c(e)

• Kirchhoff’s law:
For each vertex u ∈ S \ {s, t}:∑

vu∈E xvu =
∑

uv∈E xuv.

Target:
Maximize

∑
sv∈E xsv.

It’s a linear program!

CS500 Min-cost flow

We can give each edge e a cost κ(e).

The cost of a flow is

cost(f) =
∑

e

κ(e) · f(e).

In min-cost flow, we are asking for a flow with minimum cost
among all flows of value at least φ.

New target: min
∑

e κ(e)xe

New constraint:
∑

su∈E xsu ≥ φ.

Variant: Instead of lower bound φ on flow, a lower bound `(e)
for each edge.



CS500 Why Max-Flow?

So why did we waste (?) so much time discussing max-flow
instead of learning linear programming immediately?

• There is a strongly polynomial algorithm for max-flow!

• In practice, max-flow problems are often solved by LP
solvers, but for some applications we can do better.

• When all capacities are integers, then Ford-Fulkerson and
other max-flow algorithms guarantee that the max-flow has
integer value on each edge.

• This is essential for applications such as bipartite matching,
project selection, disjoint paths, etc.

• A strongly polynomial time algorithm for min-cost flow
exists as well.

CS500 Integer (Linear) Programming

• Variables xj ∈ Z for j ∈ {1, . . . , n}
• Maximize

∑
j cjxj

• Constraints
∑

j aijxj ≤ bi for i = 1, . . . ,m
• and xj ≥ 0 for all j.

Commonly known as Integer Programming (IP) or as ILP.

Mixed integer linear programming means that some variables
are in R, others in Z.

Writing max-flow as an IP, we can restrict the variables to be
integers, and the solver will give us an integer solution. . .

However, . . .

CS500 IP is hard

3-SAT ≤P IP

MonotoneSAT ≤P IP

. . . and so IP is NP-hard.

Still, IP solvers solve many practical IP problems, it is worth
trying one for a problem at hand.


