

Getting cells from disk into memory

Getting cells from disk into memory

 $B=\# {\rm bytes}$ in one ${\rm I/O}$

$$\sqrt{n}\times \sqrt{n}$$
 matrix of n cells. To do: set $M[i,j]$ to $i+j$

 $\begin{array}{l} \text{for } row \leftarrow 1 \text{ to } \sqrt{n} \\ \text{for } col \leftarrow 1 \text{ to } \sqrt{n} \\ A[row, col] \leftarrow row + col \end{array}$

Algorithm 2: for $col \leftarrow 1$ to \sqrt{n} for $row \leftarrow 1$ to \sqrt{n} $A[row, col] \leftarrow row + col$ Running time: $\Theta(n)$ Getting cells from disk into memory

B = #bytes in one I/O

$\sqrt{n}\times \sqrt{n}$ matrix of n cells. To do: set M[i,j] to i+j.

Analysing I/O-efficiency: model of computation

Transposing a matrix

First attempt:

B = #bytes in one I/O

M = #bytes of main memory

or cache

or
$$i \leftarrow 1$$
 to \sqrt{n}
for $j \leftarrow i+1$ to \sqrt{n}
swap $(A[i, j], A[j, i])$

 $I/O's: \Theta(n) \approx many months$

Transposing a matrix

Algorithm still does the same: merge-sort recursively down to arrays of size 1. The change is only to clarify how much I/O is done.

1

Algorithm MERGESORT(array A):	Running time:	Algorithm MERGESORT(array A):	Number of I/O's:
	$\Theta(\log_2 n)$ levels of recursion; merge takes $\Theta(n)$ per level: total $\Theta(n \log_2 n)$ time		$\Theta(\log_2{(n/M)})$ levels of recursion
B = #bytes in one I/O $M = #$ bytes of main or c	$\frac{\text{memory}}{\text{ache}} \qquad M \ge B^2$	B = #bytes in one I/O $M = #$ bytes of main or o	$memory cache M \ge B^2$
Changing the logarithm: merge sort		Changing the logarithm: merge sort	
B	A_1	B	A_1
Algorithm $MergeSort(array A)$:	Number of I/O's:	Algorithm MERGESORT(array A):	Number of I/O's:
if length $(A) \le M/2$ then merge-sort A (loading A into memory once) write result to disk else divide A into arrays A_1, A_2 of equal size MuncapSopm(A): MuncapSopm(A)	$\Theta(\log_2(n/M))$ levels of recursion; merge takes $\Theta(n/B)$ per level: total $\Theta(\frac{n}{B}\log_2\frac{n}{M})$ I/O's	if length $(A) \leq 1$ then return (array is already sorted) else divide A into arrays A_1, A_2 of equal size MERGESORT (A_1) ; MERGESORT (A_2) merge A_1 and A_2 into one sorted array B	$\Theta(\log_2(n/M)) \text{ levels of recursion;}$ merge takes $\Theta(n/B)$ per level: total $\Theta(\frac{n}{B}\log_2\frac{n}{M})$ I/O's

B = #bytes in one I/O M = #bytes of main memory or cache

 $M \geq B^2$

B = #bytes in one I/O M = #bytes of main memory or cache

 $M \geq B^2$

Changing the logarithm: merge sort

What makes algorithms I/O-(in)efficient?

1 I/O per operation is too much! You want $\Theta(1/B)$ amortized.

What makes algorithms I/O-efficient?

• spatial locality:

when algorithm accesses data item, it accesses nearby data around the same time; example: scanning in arrays

• temporal locality: the moments of access to a data item are clustered in time. randomised algorithms are still very well possible and useful!

What makes algorithms I/O-inefficient?

- random/unpredictable/unstructured jumps to memory locations: pointer-based data structures are often horribly inefficient with data on disk.
- (accidentally) sabotaging spatial locality: for example traversing a matrix orthogonally to its lay-out in memory

visiting vertices by increasing distance from source node s f(x) = 1 (x = 1) f

Try Dijkstra's single-source shortest paths algorithm:

Some examples

Is it always this simple?

I/O-Efficient:

Array-based implementations of stacks and queues: $\Theta(1)$ time, $\Theta(1/B)$ amortized I/O's per operation, thanks to spatial locality.

Not I/O-efficient:

Linked-list-based stacks and queues (with dynamic memory allocation): $\Theta(1)$ time, $\Theta(1)$ I/O's per operation,

traversing a linked list may cause a jump to a block that is currently not in cache *every time*:

main memory

or cache

 $M \geq B^2$

B = #bytes in one I/O M = #bytes of

${\sf I}/{\sf O}\text{-}{\sf Efficient}:$

Smart B-trees

(trees in which each node is a little subtree of size $\Theta(B)$, stored in one block on disk): $\Theta(\log n)$ time, $\Theta(\log_B n)$ I/O's per operation, thanks to spatial locality.

Not I/O-efficient:

Red-black trees: $\Theta(\log n)$ time, $\Theta(\log n)$ I/O's per operation, due to following pointers

Array-based heaps:

 $\Theta(\log n)$ time, $\Theta(\log n)$ I/O's per operation, due to the unpredictable access pattern of HEAPIFY

B = #bytes in one I/O M = #bytes of

 $M \geq B^2$

Still not great:

 $\Theta(\frac{1}{B}\log_{M/B}\frac{n}{B})$

amortized

especially for priority

queues we would like

Some examples

Some things that are easily done in linear time in main memory, cannot be done I/O-efficiently (with $\Theta(1/B)$ I/O's per operation), and need completely different algorithms.

Example: permuting. Trivial linear-time algorithm is horribly I/O-inefficient. Theory fact: I/O-efficient permutation is as difficult as I/O-efficient sorting

main memory

or cache

Some examples

I/O-Efficient:

 $\Theta(M/B)\text{-way}$ mergesort, $\Theta(M/B)\text{-way}$ quicksort: $\Theta(n\log n)$ time, $\Theta(\frac{n}{B}\log_{M/B}\frac{n}{B})$ I/O's, thanks to spatial and temporal locality

Medium:

2-way mergesort, 2-way quicksort: $\Theta(n \log n)$ time, $\Theta(\frac{n}{B} \log \frac{n}{M})$ I/O's, good spatial locality but poor temporal locality: on average, every time a data item is read from disk, it is compared to only two others

Not I/O-efficient:

Heap sort with array-based heaps: $\Theta(n\log n)$ I/O's, counting sort: $\Theta(n)$ I/O's.

$$B = \#$$
bytes in one I/O $M = \#$ bytes of main memory or cache $M \ge B^2$

Some examples

Some things that are easily done in linear time in main memory, cannot be done I/O-efficiently (with $\Theta(1/B)$ I/O's per operation), and need completely different algorithms.

Example: permuting. Trivial linear-time algorithm is horribly I/O-inefficient. Theory fact: I/O-efficient permutation is as difficult as I/O-efficient sorting

Example: breadth-first search on graph G = (V, E) with |E| = O(|V|). In memory: O(V) time. On disk: best known algo needs $\Omega(V/\sqrt{B})$ I/O's.

Example: depth-first search on graph G = (V, E) with |E| = O(|V|). In memory: O(V) time. On disk: best known algorithm needs $\Theta(V)$ I/O's.

or cache

Theory question: can we do BFS and DFS as fast as sorting? (up to a constant factor)

B = #bytes in one I/O M = #bytes of main memory or cache

 $M \ge B^2$