cache-efficient algorithms and data structures
for data that does not fit in memory

Earth surface at 30m resolution, 4 bytes/sample = 600 GB

Getting cells from disk into memory

v/ X y/n matrix of n cells. To do: set M]i, j] to i + j.

20 GB

V1t = 50000

Algorithm 1:

for row < 1 to \/n
for col <+ 1to \/n

Algorithm 2:

for col + 1to \/n
for row < 1 to \/n

Alrow, col| < row + col Alrow, col] < row + col

Running time: ©(n)

Running time: ©(n)

my cell

main memory

-

Getting cells from disk into memory

main memory

N
@

after 10 milliseconds: 1 cell

Getting cells from disk into memory

Getting cells from disk into memory

main memory

N
@

Q)
A\

after 10 milliseconds: 1 cell
after 11 milliseconds: 10000 cells

B = #bytes in one |/O

v/ X y/n matrix of n cells. To do: set M[i, j] to i+ j.

Algorithm 1:

for row < 1 to \/n
for col + 1to \/n

Alrow, col] < row + col

I/O’s: ©(n/B) ~ 5 minutes

B = #bytes in one |/O

main memory

main memory

o
N
(JQJ

Q)
N\

after 10 milliseconds: 1 cell

after 20 milliseconds: 100000 cells

B = #bytes in one 1/0

v/ X 4/n matrix of n cells. To do: set M[i, j] to i+ j.

LT HTTTH]

Both algorithms use ©(n) operations on CPU!

Standard running time analysis does not distinguish between
algorithms that scale well and algorithms that do not

[[HITHT B

Algorithm 1:

for row < 1 to /n
for col + 1to \/n

Alrow, col] < row + col

[/O’s: ©(n/B) ~ 5 minutes

Algorithm 2:

for col <+ 1to \/n
for row < 1 to \/n
Alrow, col] < row + col

1/O’'s: ©(n) ~ 10 months

B = #bytes in one 1/0

main memory

Analysing |/O-efficiency: model of computation

Analysing 1/O-efficiency: model of computation

main memory
of size M

1 “1/O" transfers
+—>
block of size B

CPU only operates on data in main memory (for free)

| /O-efficiency = number of 1/O’s as function of M, B, and

input parameters (for example n)

external memory

(disk)

of infinite size

B = #bytes in one | /0 M = #bytes of | main memory

Analysing 1/O-efficiency: model of computation

memory
size M

size B

CPU only operates on data in main memory (for free)

|/O-efficiency = number of 1/0's as function of M, B, and

input parameters (for example n)

B = #bytesinone |/O M = Ftbytes of main mehmory

or cache

block transfers (1/O’s)

cache | €| cache | &> memory <>

CPU only operates on data in main memory (for free)

| /O-efficiency = number of 1/Q’s as function of M, B, and
input parameters (for example n)

B = #bytes in one 1/0 M = #bytes of ‘main memory

Analysing 1/O-efficiency: model of computation

> c_ache > —
size M

size B

CPU only operates on data in{main memory (for free)

| /O-efficiency = number of 1/O's as function of M, B, and
input parameters (for example n)

B = #bytes inone I/O M = #bytes of | MM TGTNOY

Analysing |/O-efficiency: model of computation Analysing 1/O-efficiency: model of computation

cache | 4 - -—> cache | o -> -—>
size M size M
size B size B
CPU only operates on data in/main memory (for free) CPU only operates on data in' main memory (for free)
frequent assumption
| /O-efficiency = number of 1/O’s as function of M, B, and | /O-efficiency = number of 1/Q’s as function of M, B, and
input parameters (for example n) input parameters (for example n) l

B = #bytesin one |/O M = Ftbytes of mglrncgncirgory B = #tbytes in one |/O M = #bytes of mglrncg”::%ne’lory M > B?
Transposing a matrix Transposing a matrix

[[[e o0 0o | [

N \ \ o \ \
RERNERREERE T -
Nz \ . I \ [
[/] \ . ERERN \
RN \ \ N \
ESEEERSAAEE i AERREN
* - = = - =
\ \ <] \ \ <]
\ \ \ \ \ \
\ \ \ \ \ \
I I [~ I I [~
First attempt: First attempt:
for i<« 1to/n fori<« 1to/n
for j«—i+1to/n for j«— i+ 1to/n
swap(Ali. j], Alj.i]) swap(Ali. j], Alj. 1])

[/O’s: ©(n) ~ many months

B = #bytesinone |/O M = Ftbytes of mgirncg'\(:ehngory M > B? B = #bytes inone |/O M = Fbytes of mgirncran:?‘rgory M > B?

Transposing a matrix

Transposing a matrix

Algorithm T'(starti, startj, endi, endj):

if endj < starti then return

if starti = endi then
swap(Alendi, endj|, Alendj, endi])

else
midi « |(starti + endi)/2]
midj + | (startj + endj)/2]

T (starti, startj, midi, midy)

T (starti, midj + 1, midi, endyj)
T(midi + 1, startj, endi, midj)
T(midi + 1, midj + 1, endi, endy)

return

Initial call: T(1,1,+/n,/n)

B = #bytes in one | /0

Transposing a matrix

_ main memor
M = F#bytes of h y

2
or cache M=B

< /M/25 rows {[%:
Rﬁ_/
< /M/25 + 2

‘ blocks per row

O(n/M) calls on submatrices of size
> M/100, < M/25

#blocks in submatrix pIus mirror:

Iess than 2- IVM - (% - 2VM +2) <

2(M/B)(+2ﬂ <M/B o

Total 1/0: ©(n/M)-M/B = ©(n/B)

Algorithm T(starti, startj, endi, endj):

if endj < starti then return

if starti = endi then
swap(A[endi, endj], Alendj, endi])

else
midi < |(starti + endi)/2]
midj < | (startj + endj)/2]

T (starti, startj, midi, midy)
T(starti, midj + 1, midi, endyj)
T(midi + 1, starty, endi, midj)
T(midi + 1, midj + 1, endi, endyj)

return

fits in memory!

B = #bytes in one |/0

M = #bytes of main memory

or cache

N

N\

O(n/M) calls on submatrices of size

> M/100, < M/25

Algorithm T'(starti, startj, endi, endy):
if endj < starti then return

if starti = endi then
swap(A[endi, endj|, Alendj, endi])

else
midi « |(starti + endi)/2]
midj « | (startj + endj)/2]

T (starti, startj, midi, midyj)

T (starti, midj + 1, midi, endy)

T (midi 4+ 1, startj, endi, midy)
T(midi + 1, midj + 1, endi, endy)

return

Initial call: T(1,1,+/n,/n)

B = #bytes in one 1/0

Our goals

_ main memor
M = #tbytes of h y

2
or cache M=>B

CPU operations

I/O operations

O(logn)

©(nlogn)

O(1/B) amortized
O(n/B)

at most ©(logp %), but preferably:
O(5 logyp %) amortized

@(% 10gM/B %)

Division by B is cruciall

B = #bytes in one 1/0

M = #tbytes o

f main memory

or cache

Changing the logarithm: merge sort

Changing the logarithm: merge sort

Algorithm still does the same: merge-sort recursively down to arrays of size 1.
The change is only to clarify how much 1/0 is done.

Algorithm MERGESORT(array A):

if length(A) <1 then
return (array is already sorted)

else
divide A into arrays Aq, Ay of equal size
MERGESORT(A1); MERGESORT(A5)
merge Ay and A into one sorted array B
replace A by B

Running time:

O(logy n) levels of recursion;
merge takes O(n) per level:

total ©(nlog, 1) time

B = #bytes inone /O M = #bytes of M

Changing the logarithm: merge sort

ain memory
or cache

B

I] <—J

Algorithm MERGESORT(array A):
if length(A) < M/2 then

merge-sort A (loading A into memory once)

write result to disk

else
divide A into arrays A;, Ay of equal size
MERGESORT(A1); MERGESORT(A>)
merge Ay and A, into one sorted array B
replace A by B

Number of 1/0's:

©(logy(n/M)) levels of recursion;
merge takes O(n/B) per level:
total ©(% log, 17) 1/0's

B = #bytesin one /O M = #bytes of M

ain memory
or cache

Algorithm MERGESORT(array A):
if length(A) < M /2 then

merge-sort A (loading A into memory once)

write result to disk

else
divide A into arrays Ap, Ay of equal size
MERGESORT(A;); MERGESORT(A3)
merge A; and As into one sorted array B
replace A by B

Number of 1/O's:

©(log, (n/M)) levels of recursion;

B = #bytesin one I/O M = #bytes of M

Changing the logarithm: merge sort

ain memory
or cache

B

I] <—J

Algorithm MERGESORT(array A):

if length(A) <1 then
return (array is already sorted)
else

divide A into arrays Ap, Ay of equal size
MERGESORT(A1); MERGESORT(A3)
merge A; and As into one sorted array B
replace A by B

Number of 1/O's:

O(logy(n/M)) levels of recursion;
merge takes O(n/B) per level:
total ©(3 log, 7) 1/0's

analysis also applies to
unmodified algorithm

B = #bytesin one /O M = #bytes of M

ain memory
or cache

Changing the logarithm: merge sort

I Can merge k lists efficiently provided memory fits one block of each list !

B

Algorithm MERGESORT(array A):

if length(A) < M/2 then
merge-sort A (loading A into memory once)
write result to disk

else
divide A into arrays Ay, ..., Aj of equal size
for i < 1 to k do MERGESORT(4;)
merge A1, ..., Ay into one sorted array B
replace A by B

e T T T T T7]
Number of 1/0’s:

O(log,.(n/M)) levels of recursion;
merge takes ©(n/B) per level:
total ©(% log;, 17) 1/0’s

k= % —1: get O(% logr) 5)

B = #bytes inone |/O M = #bytes of Main e M > B?

or cac

What makes algorithms 1/O-(in)efficient?

e

1 1/O per operation is too much! You want ©(1/B) amortized.

What makes algorithms |/O-efficient?

e spatial locality:

when algorithm accesses data item, it accesses nearby data around the same time;

example: scanning in arrays

e temporal locality:

the moments of access to a data item are clustered in time.

What makes algorithms 1/O-inefficient?

| /O-efficient
randomised algorithms
are still very well
possible and useful!

-~
e random /unpredictable/unstructured jumps to memory locations:

pointer-based data structures are often horribly

e (accidentally) sabotaging spatial locality:
for example traversing a matrix orthogonally to

inefficient with data on disk.

its lay-out in memory

B = #bytesinone |/O M = #bytes of Main memory M > B?

or cac

(S

Is it always this simple?

Try Dijkstra’s single-source shortest paths algorithm:
visiting vertices by increasing distance from source node s

Data access pattern seems to have no structure
(except for what's known only after the computation...

B = #bytes inone I/0O M = #bytes of | MM TGTOY M > B?

Some examples

|/ O-Efficient:
Array-based implementations of stacks and queues:

©(1) time, ©(1/B) amortized 1/O’s per operation,
thanks to spatial locality.

Not I/O-efficient:

Linked-list-based stacks and queues (with dynamic memory allocation):
©(1) time, O(1) 1/O’s per operation,

traversing a linked list may cause a jump to a block that is currently not in
cache every time:

B = #bytes inone I/O M = #bytes of | MM TGTNOY M > B?

Some examples

|/ O-Efficient:

Smart B-trees
(trees in which each node is a little subtree of size ©(B), stored in one block on disk):

O(logn) time, ©(loggn) 1/O’s per operation,

thanks to spatial locality. \

Not I/O-efficient:

Red-black trees:
O(logn) time, O©(logn) 1/O’s per operation,
due to following pointers

Still not great:
especially for priority
queues we would like
9(% 10%;\1/3 %)
amortized.
Array-based heaps:

O(logn) time, O(logn) 1/Q’s per operation,

due to the unpredictable access pattern of HEAPIFY

B = #bytesin one |/O M = Ftbytes of main m%mory

or cache

Some examples

Some things that are easily done in linear time in main memory,
cannot be done |/O-efficiently (with ©(1/B) 1/O’s per operation),
and need completely different algorithms.

Example: permuting. Trivial linear-time algorithm is horribly |/O-inefficient.
Theory fact: |/O-efficient permutation is as difficult as |/O-efficient sorting

(1,9) | (2,€) | 3,a) | (4,k) | (5,b) | (6,f) | (7,4) | (8d) | (9,4) | (10,h) (1L,¢)

B = #bytesinone |/O M = Ftbytes of main mehmory

or cache

Some examples

|/ O-Efficient:

©(M/B)-way mergesort, O(M/B)-way quicksort:
O(nlogn) time, O(F logy, 5) 1/0's,
thanks to spatial and temporal locality

Medium:

2-way mergesort, 2-way quicksort:

@(nlogn). time, Q(%log 17) 1/0’s, .

good spatial locality but poor temporal locality:

on average, every time a data item is read from disk, it is compared to only two others

Not 1/O-efficient:

Heap sort with array-based heaps: O(nlogn) I/O'’s,
counting sort: ©(n) 1/0’s.

_ main memor
M = #tbytes of h y

B = #bytes in one 1/0 or cache

Some examples

Some things that are easily done in linear time in main memory,
cannot be done |/O-efficiently (with ©(1/B) 1/O’s per operation),
and need completely different algorithms.

Example: permuting. Trivial linear-time algorithm is horribly 1/O-inefficient.
Theory fact: |/O-efficient permutation is as difficult as |/O-efficient sorting

Example: breadth-first search on graph G = (V, E) with |E| = O(|V|).
In memory: O(V) time. On disk: best known algo needs Q(V/v/B) 1/0's.

Example: depth-first search on graph G = (V, E) with |E| = O(|V]).
In memory: O(V') time. On disk: best known algorithm needs ©(V) I/O's.

Theory question: can we do BFS and DFS as fast as sorting?
(up to a constant factor)

M = #bytes of main mehmory

B = #bytes in one 1/0 or cache

