
ad clicks

hyperlinkschain store purchases

phone calls

cell phone tracking data

digital elevation models

3D medical images

gigabytes

terabytes
petabytes

remote sensing data

text indexing

terabytes

Earth surface at 30m resolution, 4 bytes/sample = 600 GB

cache-efficient algorithms and data structures
for data that does not fit in memory

Algorithm 1:

for row ← 1 to
√
n

for col ← 1 to
√
n

A[row , col]← row + col

Algorithm 2:

for col ← 1 to
√
n

for row ← 1 to
√
n

A[row , col]← row + col

Running time: Θ(n) Running time: Θ(n)

√
n×√n matrix of n cells. To do: set M [i, j] to i + j.

√
n = 50 00020 GB

Getting cells from disk into memory

my cell

disk

main memory

Getting cells from disk into memory

diskm
y

ce
ll

after 10 milliseconds: 1 cell

main memory

Getting cells from disk into memory

diskΘ
(B

)
ce

lls
after 10 milliseconds: 1 cell

after 11 milliseconds: 10 000 cells

B = #bytes in one I/O

main memory

Getting cells from disk into memory

diskΘ
(B

)
ce

lls

after 10 milliseconds: 1 cell

after 11 milliseconds: 10 000 cells

B = #bytes in one I/O

main memory

after 20 milliseconds: 100 000 cells

Algorithm 1:

for row ← 1 to
√
n

for col ← 1 to
√
n

A[row , col]← row + col

Algorithm 2:

for col ← 1 to
√
n

for row ← 1 to
√
n

A[row , col]← row + col

Running time: Θ(n)

√
n×√n matrix of n cells. To do: set M [i, j] to i + j.

B = #bytes in one I/O main memory

I/O’s: Θ(n/B) ≈ 5 minutes

Algorithm 1:

for row ← 1 to
√
n

for col ← 1 to
√
n

A[row , col]← row + col

Algorithm 2:

for col ← 1 to
√
n

for row ← 1 to
√
n

A[row , col]← row + col

√
n×√n matrix of n cells. To do: set M [i, j] to i + j.

B = #bytes in one I/O main memory

I/O’s: Θ(n) ≈ 10 months

Both algorithms use Θ(n) operations on CPU!

Standard running time analysis does not distinguish between
algorithms that scale well and algorithms that do not

I/O’s: Θ(n/B) ≈ 5 minutes

B = #bytes in one I/O main memoryM = #bytes of

Analysing I/O-efficiency: model of computation

main memory
of size M

external memory
(disk)

of infinite size

1 “I/O” transfers

block of size B
CPU

CPU only operates on data in main memory (for free)

I/O-efficiency = number of I/O’s as function of M , B, and
input parameters (for example n)

B = #bytes in one I/O main memoryM = #bytes of

Analysing I/O-efficiency: model of computation

memoryCPU cachecache disk

block transfers (I/O’s)

CPU only operates on data in main memory (for free)

I/O-efficiency = number of I/O’s as function of M , B, and
input parameters (for example n)

B = #bytes in one I/O main memoryM = #bytes of

Analysing I/O-efficiency: model of computation

memory
size M

CPU

or cache

size B

CPU only operates on data in main memory (for free)

I/O-efficiency = number of I/O’s as function of M , B, and
input parameters (for example n)

B = #bytes in one I/O main memoryM = #bytes of

Analysing I/O-efficiency: model of computation

CPU
cache

or cache

size B

size M

CPU only operates on data in main memory (for free)

I/O-efficiency = number of I/O’s as function of M , B, and
input parameters (for example n)

B = #bytes in one I/O main memoryM = #bytes of

Analysing I/O-efficiency: model of computation

CPU cache

or cache

size B

size M

CPU only operates on data in main memory (for free)

I/O-efficiency = number of I/O’s as function of M , B, and
input parameters (for example n)

B = #bytes in one I/O main memoryM = #bytes of

Analysing I/O-efficiency: model of computation

CPU cache

or cache

size B

size M

M ≥ B2

frequent assumption
CPU only operates on data in main memory (for free)

I/O-efficiency = number of I/O’s as function of M , B, and
input parameters (for example n)

B = #bytes in one I/O main memoryM = #bytes of or cache

Transposing a matrix

First attempt:

for i← 1 to
√
n

for j ← i + 1 to
√
n

swap(A[i, j], A[j, i])

M ≥ B2 B = #bytes in one I/O main memoryM = #bytes of or cache

Transposing a matrix

First attempt:

for i← 1 to
√
n

for j ← i + 1 to
√
n

swap(A[i, j], A[j, i])

I/O’s: Θ(n) ≈ many months

M ≥ B2

B = #bytes in one I/O main memoryM = #bytes of or cache

Transposing a matrix

M ≥ B2

Algorithm T(starti , startj , endi , endj):

if endj ≤ starti then return

if starti = endi then
swap(A[endi , endj], A[endj , endi])

else
midi ← b(starti + endi)/2c
midj ← b(startj + endj)/2c
T(starti , startj ,midi ,midj)
T(starti ,midj + 1,midi , endj)
T(midi + 1, startj , endi ,midj)
T(midi + 1,midj + 1, endi , endj)

return

Initial call: T(1, 1,
√
n,
√
n)

Transposing a matrix

B = #bytes in one I/O main memoryM = #bytes of or cache M ≥ B2

Algorithm T(starti , startj , endi , endj):

if endj ≤ starti then return

if starti = endi then
swap(A[endi , endj], A[endj , endi])

else
midi ← b(starti + endi)/2c
midj ← b(startj + endj)/2c
T(starti , startj ,midi ,midj)
T(starti ,midj + 1,midi , endj)
T(midi + 1, startj , endi ,midj)
T(midi + 1,midj + 1, endi , endj)

return

Initial call: T(1, 1,
√
n,
√
n)

O(n/M) calls on submatrices of size
≥M/100, ≤M/25

Algorithm T(starti , startj , endi , endj):

if endj ≤ starti then return

if starti = endi then
swap(A[endi , endj], A[endj , endi])

else
midi ← b(starti + endi)/2c
midj ← b(startj + endj)/2c
T(starti , startj ,midi ,midj)
T(starti ,midj + 1,midi , endj)
T(midi + 1, startj , endi ,midj)
T(midi + 1,midj + 1, endi , endj)

return

Initial call: T(1, 1,
√
n,
√
n)

Transposing a matrix

B = #bytes in one I/O main memoryM = #bytes of or cache M ≥ B2

< 1
B

√
M/25 + 2

blocks per row

≤
√

M/25 rows

#blocks in submatrix plus mirror:
less than 2 · 15

√
M · (1

B · 15
√
M + 2) ≤

2
5 (M/B)(1

5 + 2B/
√
M) ≤M/B

Total I/O: Θ(n/M) ·M/B = Θ(n/B)
fits in memory!

O(n/M) calls on submatrices of size
≥M/100, ≤M/25

Our goals

B = #bytes in one I/O main memoryM = #bytes of or cache M ≥ B2

CPU operations I/O operations

Θ(1) Θ(1/B) amortized

Θ(log n)

Θ(n) Θ(n/B)

Θ(n log n) Θ(n
B

logM/B
n
B

)

Θ(1
B

logM/B
n
B

) amortized

Division by B is crucial!

at most Θ(logB
n
B

), but preferably:

Changing the logarithm: merge sort

B = #bytes in one I/O main memoryM = #bytes of or cache M ≥ B2

Algorithm MergeSort(array A):

if length(A) ≤ 1 then
return (array is already sorted)

else
divide A into arrays A1, A2 of equal size
MergeSort(A1); MergeSort(A2)
merge A1 and A2 into one sorted array B
replace A by B

Running time:

Θ(log2 n) levels of recursion;

merge takes Θ(n) per level:

total Θ(n log2 n) time

Changing the logarithm: merge sort

B = #bytes in one I/O main memoryM = #bytes of or cache M ≥ B2

Algorithm MergeSort(array A):

if length(A) ≤M/2 then
merge-sort A (loading A into memory once)
write result to disk

else
divide A into arrays A1, A2 of equal size
MergeSort(A1); MergeSort(A2)
merge A1 and A2 into one sorted array B
replace A by B

Number of I/O’s:

Θ(log2 (n/M)) levels of recursion;

Algorithm still does the same: merge-sort recursively down to arrays of size 1.
The change is only to clarify how much I/O is done.

Changing the logarithm: merge sort

B = #bytes in one I/O main memoryM = #bytes of or cache M ≥ B2

Number of I/O’s:

Θ(log2(n/M)) levels of recursion;

merge takes Θ(n/B) per level:

total Θ(n
B log2

n
M) I/O’s

B

A1

A2

Algorithm MergeSort(array A):

if length(A) ≤M/2 then
merge-sort A (loading A into memory once)
write result to disk

else
divide A into arrays A1, A2 of equal size
MergeSort(A1); MergeSort(A2)
merge A1 and A2 into one sorted array B
replace A by B

Changing the logarithm: merge sort

B = #bytes in one I/O main memoryM = #bytes of or cache M ≥ B2

Number of I/O’s:

Θ(log2(n/M)) levels of recursion;

merge takes Θ(n/B) per level:

total Θ(n
B log2

n
M) I/O’s

B

A1

A2

Algorithm MergeSort(array A):

if length(A) ≤ 1 then
return (array is already sorted)

else
divide A into arrays A1, A2 of equal size
MergeSort(A1); MergeSort(A2)
merge A1 and A2 into one sorted array B
replace A by B

analysis also applies to
unmodified algorithm

Changing the logarithm: merge sort

B = #bytes in one I/O main memoryM = #bytes of or cache M ≥ B2

Number of I/O’s:

Θ(logk(n/M)) levels of recursion;

merge takes Θ(n/B) per level:

total Θ(n
B logk

n
M) I/O’s

k = M
B − 1: get Θ(n

B logM/B
n
B)

B

A1

A2

! Can merge k lists efficiently provided memory fits one block of each list !

A3

Ak

Algorithm MergeSort(array A):

if length(A) ≤M/2 then
merge-sort A (loading A into memory once)
write result to disk

else
divide A into arrays A1, ..., Ak of equal size
for i← 1 to k do MergeSort(Ai)
merge A1, ..., Ak into one sorted array B
replace A by B

Is it always this simple?

B = #bytes in one I/O main memoryM = #bytes of or cache M ≥ B2

Try Dijkstra’s single-source shortest paths algorithm:
visiting vertices by increasing distance from source node s

s

Data access pattern seems to have no structure
(except for what’s known only after the computation...

What makes algorithms I/O-(in)efficient?

B = #bytes in one I/O main memoryM = #bytes of or cache M ≥ B2

1 I/O per operation is too much! You want Θ(1/B) amortized.

What makes algorithms I/O-efficient?

• spatial locality:
when algorithm accesses data item, it accesses nearby data around the same time;

example: scanning in arrays

• temporal locality:
the moments of access to a data item are clustered in time.

What makes algorithms I/O-inefficient?

• random/unpredictable/unstructured jumps to memory locations:
pointer-based data structures are often horribly inefficient with data on disk.

• (accidentally) sabotaging spatial locality:
for example traversing a matrix orthogonally to its lay-out in memory

I/O-efficient
randomised algorithms
are still very well
possible and useful!

Some examples

B = #bytes in one I/O main memoryM = #bytes of or cache M ≥ B2

I/O-Efficient:

Array-based implementations of stacks and queues:
Θ(1) time, Θ(1/B) amortized I/O’s per operation,
thanks to spatial locality.

Not I/O-efficient:

Linked-list-based stacks and queues (with dynamic memory allocation):
Θ(1) time, Θ(1) I/O’s per operation,
traversing a linked list may cause a jump to a block that is currently not in
cache every time:

Some examples

B = #bytes in one I/O main memoryM = #bytes of or cache M ≥ B2

I/O-Efficient:

Smart B-trees
(trees in which each node is a little subtree of size Θ(B), stored in one block on disk):

Θ(log n) time, Θ(logB n) I/O’s per operation,
thanks to spatial locality.

Not I/O-efficient:

Red-black trees:
Θ(log n) time, Θ(log n) I/O’s per operation,
due to following pointers

Array-based heaps:
Θ(log n) time, Θ(log n) I/O’s per operation,
due to the unpredictable access pattern of Heapify

Still not great:
especially for priority
queues we would like
Θ(1

B
logM/B

n
B

)
amortized.

Some examples

B = #bytes in one I/O main memoryM = #bytes of or cache M ≥ B2

I/O-Efficient:

Θ(M/B)-way mergesort, Θ(M/B)-way quicksort:
Θ(n log n) time, Θ(n

B
logM/B

n
B

) I/O’s,
thanks to spatial and temporal locality

Medium:

2-way mergesort, 2-way quicksort:
Θ(n log n) time, Θ(n

B
log n

M
) I/O’s,

good spatial locality but poor temporal locality:
on average, every time a data item is read from disk, it is compared to only two others

Not I/O-efficient:

Heap sort with array-based heaps: Θ(n log n) I/O’s,
counting sort: Θ(n) I/O’s.

Some examples

B = #bytes in one I/O main memoryM = #bytes of or cache M ≥ B2

Some things that are easily done in linear time in main memory,
cannot be done I/O-efficiently (with Θ(1/B) I/O’s per operation),
and need completely different algorithms.

Example: permuting. Trivial linear-time algorithm is horribly I/O-inefficient.

(3, a) (5, b) (11, c)(8, d)(2, e) (6, f)(1, g) (10, h)(7, i) (9, j)(4, k)

Theory fact: I/O-efficient permutation is as difficult as I/O-efficient sorting

Some examples

B = #bytes in one I/O main memoryM = #bytes of or cache M ≥ B2

Some things that are easily done in linear time in main memory,
cannot be done I/O-efficiently (with Θ(1/B) I/O’s per operation),
and need completely different algorithms.

Example: permuting. Trivial linear-time algorithm is horribly I/O-inefficient.

Theory fact: I/O-efficient permutation is as difficult as I/O-efficient sorting

Example: breadth-first search on graph G = (V,E) with |E| = O(|V |).
In memory: O(V) time. On disk: best known algo needs Ω(V/

√
B) I/O’s.

Example: depth-first search on graph G = (V,E) with |E| = O(|V |).
In memory: O(V) time. On disk: best known algorithm needs Θ(V) I/O’s.

Theory question: can we do BFS and DFS as fast as sorting?
(up to a constant factor)

