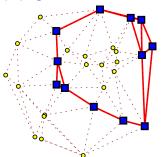

What if the vertex cover is small?

- 1. G = (V, E) with n vertices
- 2. $K \leftarrow \text{Approximate } \text{VertexCoverMin} \text{ up to a factor of two.}$
- 3. Any vertex cover of G is of size $\geq K/2$.
- 4. Naively compute optimal in $O(n^{K+2})$ time.

Induced subgraph


Definition

 $N_G(v)$: **Neighborhood** of v – set of vertices of G adjacent to v.

Definition

Let G = (V, E) be a graph. For a subset $S \subseteq V$, let G_S be the *induced subgraph* over S.

Exact fixed parameter tractable algorithm

Fixed parameter tractable algorithm for ${\bf VertexCoverMin}.$

Computes minimum vertex cover for the induced graph G_X :

```
fpVCI (X, \beta)

// \beta: size of VC computed so far.

if X = \emptyset or G_X has no edges then return \beta

e \leftarrow any edge uv of G_X.

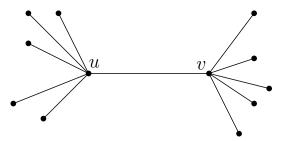
\beta_1 = \text{fpVCI}\left(X \setminus \{u, v\}, \beta + 2\right)

\beta_2 = \text{fpVCI}\left(X \setminus \{u\} \cup N_{G_X}(v)\right), \beta + |N_{G_X}(v)|\right)

\beta_3 = \text{fpVCI}\left(X \setminus \{v\} \cup N_{G_X}(u)\right), \beta + |N_{G_X}(u)|\right)

return \min(\beta_1, \beta_2, \beta_3).

algFPVertexCover (G = (V, E))


return \text{fpVCI}(V, 0)
```

Depth of recursion

Lemma

The algorithm **algFPVertexCover** returns the optimal solution to the given instance of **VertexCoverMin**.

Proof...

Depth of recursion II

Lemma

The depth of the recursion of $\operatorname{algFPVertexCover}(G)$ is at most α , where α is the minimum size vertex cover in G.

Proof.

- 1. When the algorithm takes both ${\it u}$ and ${\it v}$ one of them in opt. Can happen at most α times.
- 2. Algorithm picks $N_{G_X}(v)$ (i.e., β_2). Conceptually add v to the vertex cover being computed.
- 3. Do the same thing for the case of β_3 .
- 4. Every such call add one element of the opt to conceptual set cover. Depth of recursion is $\leq \alpha$.

Vertex Cover

Exact fixed parameter tractable algorithm

Theorem

G: graph with **n** vertices. Min vertex cover of size α . Then, **algFPVertexCover** returns opt. vertex cover. Running time is $O(3^{\alpha}n^2)$.

Proof:

- 1. By lemma, recursion tree has depth α .
- 2. Rec-tree contains $\leq 2 \cdot 3^{\alpha}$ nodes.
- 3. Each node requires $O(n^2)$ work.

Algorithms with running time $O(n^c f(\alpha))$, where α is some parameter that depends on the problem are **fixed parameter** tractable.