Common Features of Flow Networks

» Network represented by a (directed) graph G = (V, E)

» Each edge e has a capacity c(e) > 0 that limits amount of
traffic on e

» Source(s) of traffic/data
» Sink(s) of traffic/data
» Traffic flows from sources to sinks

» Traffic is switched/interchanged at nodes

Flow: abstract term to indicate stuff (traffic/data/etc) that flows
from sources to sinks.

Definition of Flow

Two ways to define flows:
» edge based
» path based

They are essentially equivalent but have different uses.

Edge based definition is more compact.

Single Source Single Sink Flows

Simple setting:
> single source s and single sink t
» every other node v is an internal node

» flow originates at s and terminates at t

» Each edge e has a capacity c(e) > 0
» Source s € V with no incoming edges

» Sink t € V with no outgoing edges

Assumptions: All capacities are integer, and every vertex has at
least one edge incident to it.

Edge Based Definition of Flow

Definition
A flow in a network G = (V/, E), is a function f : E — RZ? such
that

» Capacity Constraint: For each edge
e, f(e) < c(e)

» Conservation Constraint: For each
vertex v # s, t

Y fley= > f(e)

e into v e out of v

Figure : Flow with value



More Definitions and Notation

Notation

> The inflow into a vertex v is F™(v) = >, into  F(€) and the
outflow is fO"'(v) = >, out of v (€)

> For a set of vertices A, F™(A) =3, into Af(€e). Outflow
fOUt(A) is defined analogously

Definition
For a network G = (V/, E) with source s, the value of flow f is
defined as v(f) = foUt(s)

Path based flow implies Edge based flow

Lemma
Given a path based flow f : P — RZ0 there is an edge based flow
f': E — R20 of the same value.

Proof.
For each edge e define f'(e) =>_ .., f(p).
Verify capacity and conservation constraints for f’. ]

A Path Based Definition of Flow

Intuition: flow goes from source s to sink t along a path.

P: set of all paths from s to t. |P| can be exponential in n!

Definition
A flow in a network G = (V/, E), is a function f : P — R=% such
that

» Capacity Constraint: For each edge e, total flow on e is
< c(e).

» Conservation Constraint: No need! Automatic.

Value of flow: > . f(p)

Edge based flow to Path based Flow

Flow Decomposition:

Lemma

Given an edge based flow f' : E — R29, there is a path based flow
f: P — R0 of same value. Moreover, f assigns non-negative flow
to at most m + n paths where |[E| = m and |V| = n. Given f', the
path based flow can be computed in O(mn) time.

Proof Ildea.

» remove all edges with f'(e) =0

» find a path p from s to t

> assign f(p) to be minec, f'(€)

» reduce f’(e) for all e € p by f/(e)

» repeat until no path from s to t



Edge vs Path based Definitions of Flow

Edge based flows:
» compact representation, only m values to be specified
» need to check flow conservation explicitly at each internal
node
Path flows:
» in some applications, paths more natural
» not compact
» no need to check flow conservation constraints

Equivalence shows that we can go back and forth easily.

Cuts

Definition

Given a flow network an s — t cut is a set of edges E’ C E such
that removing E’ disconnects s from t: in other words there is no
directed s — t path in E — E'.

The capacity of cut E' is )~ g c(e).

Caution: cut may leave t — s paths!

The Maximum-Flow Problem

Problem
Input A network G with capacity ¢ and source s and sink t
Goal Find flow of maximum value

Question: Given a flow network, what is an upper bound on the
maximum flow between source and sink?

Minimum Cut

Definition
Given a flow network an s — t minimum cut is a cut E’ of smallest
capacity amongst all s — t cuts.

Observation: exponential number of s — t cuts and no “easy’
algorithm to find a minimum cut.



The Minimum-Cut Problem Flows and Cuts

Lemma
For any s — t cut E’, maximum s — t flow < capacity of E'.

Proof.
Formal proof easier with path based definition of flow.
Problem Suppose f : P — RZ0 is a max-flow.

Input A network G with capacity ¢ and source s and sink t Every path p € P contains an edge e € E'. Why?

Goal Find the capacity of a minimum s — t cut Assign each path p € P to exactly on edge e € E'.
Let P, be paths assigned to e € E’. Then

v(if)=) flp) = >_ > flp)

pEP ecE’ pePe.
< Y cle)
ecE’
Flows and Cuts Max-Flow Min-Cut Theorem

Theorem
In any flow network the maximum s — t flow is equal to the
minimum s — t cut.

Lemma

For any s — t cut E’, maximum s — t flow < capacity of E’. Can compute minimum-cut from maximum flow and vice-versal!
Proof coming shortly.

Corollary

Maximum s — t flow < minimum s — t cut. Many applications:

» optimization
» graph theory

» combinatorics



The Maximum-Flow Problem

Problem

Input A network G with capacity ¢ and source s and sink t

Goal Find flow of maximum value

Greedy Approach: Issues

1. Begin with f(e) = 0 for each edge

2. Find a s-t path P with f(e) < c(e) for
every edge e € P

3. Augment flow along this path

4. Repeat augmentation for as long as
possible.

Need to “push-back” flow along edge (u, v)

Greedy Approach

Residual Graph

Definition

1. Begin with f(e) = 0 for each edge
. Find a s-t path P with f(e) < c(e) for

every edge e € P

. Augment flow along this path

4. Repeat augmentation for as long as

possible.

For a network G = (V, E) and flow f, the residual graph
Gr = (V', E’) of G with respect to f is

» V=V

» Forward Edges: For each edge e € E with f(e) < c(e), we
e € E' with capacity c(e) — f(e)

» Backward Edges: For each edge e = (u, v) € E with
f(e) > 0, we (v, u) € E’ with capacity f(e)



Residual Graph Example Ford-Fulkerson Algorithm

for every edge e, f(e) = 0
Gr is residual graph of G with respect to f
while Gr has a simple s-t path

let P be simple s-t path in Gf

f = augment(f,P)

Construct new residual graph Gr

augment (£ ,P)
let b be bottleneck capacity, i.e., min capacity of edges in P
for each edge e in P
if e is a forward edge
f(e) = f(e) + b

Figure : Flow in red edges Figure : Residual Graph else (x e is a backward edge *)
f(e) = f(e) - D
return f
Properties about Augmentation Progress in Ford-Fulkerson

Lemma Proposition
If f is a flow and P is a simple s-t path in Gf, then Let f be a flow and f' be flow after one augmentation. Then
f" = augment(f, P) is also a flow. v(f) < v(f')
Lemma Proof.
At every stage of the Ford-Fulkerson algorithm, the flow values Let P be an augmenting path, i.e., P is a simple s-t path in
f(e) and the residual capacities in Gf are integers residual graph
Proof. > Fir.st. edge e in P must Ieav-e s | |
Initial flow and residual capacities are integers. Suppose lemma > Original network G has no incoming edges to s; hence e is a
holds for j iterations. Then in j + 1st iteration, minimum capacity forward edge
edge b is an integer, and so flow after augmentation is an » P is simple and so never returns to s
integer. O » Thus, value of flow increases by the flow on edge e ]



Termination Proof Efficiency of Ford-Fulkerson

Theorem
Let C =3 o out of s €(e). Ford-Fulkerson algorithm terminates
after finding at most C augmenting paths

Running time = O(mC) is not polynomial. Can the upper bound
be achieved?

Proof.
The value of the flow increases by at least 1 after each
augmentation. Maximum value of flow is at most C. ]

Running time

» Number of iterations = O(C)

» Number of edges in Gf <2m

» Time to find augmenting path is O(n+ m)
» Running time is O(C(n+ m)) = O(mC)

Correctness of Ford-Fulkerson Augmenting Path Algorithm  Cuts as Vertex Partitions

Let A C V such that

Question: When the algorithm terminates, is the flow computed > SEAtZA
the maximum s — t flow? » B=V —Aand hencet € B

Define (A, B) = {(u,v) e E|uc A,v e B}

Claim

Proof idea: show a cut of value equal to the flow. Also shows that )
(A,B) isans —t cut.

maximum flow is equal to minimum cut!

Definition

Given a flow network an s — t cut is a set of edges E’ C E such
that removing E’ disconnects s from t: in other words there is no
directed s — t path in E — E'.

The capacity of cut E' is )~ g c(e).




Cuts as Vertex Partitions Ford-Fulkerson Correctness

Lemma Lemma

Suppose E' is an s — t cut. Then there is a cut (A, B) such that Z,t/;er?f/)s ZO st:: %a)th in G then there s some cut (4, B) such
(Aa B) g El- atv =cC )

Proof. Proof.

E'is an s — t cut implies no path from s to t in (V, E — EY). Let A be all vertices reachable from s in Gr; B=V \ A

Let A be set of all nodes reachable by s in (V,E — E’). By above,

‘A o » scAand t € B. So (A,B) is an s-t
And also (A, B) C E’. Why? 0 () cutin G |
) () *» Ife=(u,v) € G with uc Aand
Corollary (). v € B, then f(e) = c(e) because
Every minimal s — t cut E' is a cut of the form (A, B). ) otherwise v is reachable from s
L]
Lemma Proof Continued Ford-Fulkerson Correctness
Theorem
Proof. The flow returned by the algorithm is the maximum flow.
o » If e=(uv,v') € G with v’ € B and Proof.
- v/ € A, then f(e) = 0 because
() otherwise ' is reachable from s » For any flow f and s-t cut (A, B), v(f) < ¢(A, B)
O o) © > Thus » For flow f* returned by algorithm, v(f*) = c(A*, B*) for
@ v(f) = FOUt(A) — Fin(A) = (A, B) some s-T cut (A*, B*)
O » Hence, f* is maximum



Max-Flow Min-Cut Theorem and Integrality of Flows Efficiency of Ford-Fulkerson

Running time = O(mC) is not polynomial. Can the upper bound

i ?
Theorem be achieved?

For any network G, the value of a maximum s — t flow is equal to
the capacity of the minimum s-t cut.

Theorem
For any network G with integer capacities, there is a maximum
s — t flow that is integer valued.

Augmenting Paths with Large Bottleneck Capacity Capacity Scaling Algorithm

» Pick augmenting paths with largest bottleneck capacity in

. . for all edges e, f(e) = 0
each iteration of Ford-Fulkerson

A = largest power of 2 smaller than maximum capacity edge in G

» How do we find path with largest bottleneck capacity? while A >1
» Assume we know A the bottleneck capacity while there is a simple s-t path in Gr(A)
» Remove all edges with residual capacity < A iei P be si“(lffﬂ;)s_t path in Gr(A)
» Check if there is a path from s to t ~ augnens i,
. . update Gr(A)
» Do binary search to find largest A A=A)2
» Running time: O(mlog C)
Algorithm works in polynomial time but can devise a simpler
algorithm. » Flows and residual capacities are always integral
Definition » When A =1, Gf(A) = Gy; so on termination f is max-flow

Given graph G, s — t flow f and a parameter A, the graph Gr(A) » Outermost loop runs for at most [log C] + 1
is the residual graph with all edges in Gf with residual capacity
< A removed.

v

Each augmentation increases flow by at least A



Running Time Analysis of Capacity Scaling Algorithm

v

In each scaling phase there are at most 2m augmentations

v

Each augmenting path can be found in O(m) time

v

There are at most [log C| + 1 scaling phases
Total time is O(m? log C)

v

Augmentations per Scaling Phase

Proposition
There are at most 2m augmentation paths per scaling phase.

Proof.
» Let f be flow at end of previous scaling phase, i.e., with
scaling 2A
» If £* is max-flow, then v(f*) < v(f) + m(24A)

» Since each augmentation in new phase increases flow by A,
there can be at most 2m augmentations to f

Paths in Gf(A) and max-flows

Lemma
Let f be such that G¢(A) does not have an s-t augmenting path.
Then maximum flow is at most v(f) + mA.

Proof.
We will show that there is a cut (A, B) of capacity at most
v(f) + mA
> Let A be all vertices reachable from s in G¢(A), and let
B=V\A; (A B)isan s-t cut

v(f) = Ze out of A f(e) — Ze into A f(e)
> Ze out of A[C(e) —A] - Ze into AQ
:Ze outofAC(e)_Ze out ofAA_Ze into AQ
> c(A,B)—mA [

Removing Dependence on C

» [Edmonds-Karp, Dinitz] Picking augmenting paths with fewest
number of edges yields a O(m?n) algorithm, i.e., independent
of C!

» Further improvements can yield algorithms running in
O(mnlog n), or O(n3)



Finding a Minimum Cut

Question: How do we find an actual minimum s — t cut?
Proof gives the algorithm!

» Compute an s — t maximum flow f in G

» Obtain the residual graph G¢
» Find the nodes A reachable from s in Gf
» Output the cut (A, B) ={(u,v) |ue A v e B}

Running time is essentially the same as finding a maximum flow.

Network Flow Facts to Remember

Flow network: directed graph G, capacities c, source s, sink t
» maximum s — t flow can be computed
» using Ford-Fulkerson algorithm in O(mC) time when
capacities are integral and C is an upper bound on the flow
» using capacity scaling algorithm in O(m? log C) time when
capacities are integral
» using Edmonds-Karp algorithm in O(m?n) time when
capacities are rational (strongly polynomial time algorithm)
» if capacities are integral then there is a maximum flow that is
integral and above algorithms give an integral max flow

» given a flow of value v, can decompose into O(m + n) flow
paths of same total value v. integral flow implies integral flow
on paths

» maximum flow is equal to the minimum cut and minimum cut
can be found in O(m + n) time given any maximum flow



