
Common Features of Flow Networks

I Network represented by a (directed) graph G = (V ,E)

I Each edge e has a capacity c(e) ≥ 0 that limits amount of
traffic on e

I Source(s) of traffic/data

I Sink(s) of traffic/data

I Traffic flows from sources to sinks

I Traffic is switched/interchanged at nodes

Flow: abstract term to indicate stuff (traffic/data/etc) that flows
from sources to sinks.

Single Source Single Sink Flows

Simple setting:

I single source s and single sink t

I every other node v is an internal node

I flow originates at s and terminates at t

s

1

2

3

4

5

6

t

15

5

10

30

8

4

9

4
15

6
10

10

15

15
10 I Each edge e has a capacity c(e) ≥ 0

I Source s ∈ V with no incoming edges

I Sink t ∈ V with no outgoing edges

Assumptions: All capacities are integer, and every vertex has at
least one edge incident to it.

Definition of Flow

Two ways to define flows:

I edge based

I path based

They are essentially equivalent but have different uses.

Edge based definition is more compact.

Edge Based Definition of Flow

Definition
A flow in a network G = (V ,E), is a function f : E → R≥0 such
that

s

1

2

3

4

5

6

t

14/15

4/5

10/10

14/30

8/8

0/4

9/9

0/4
1/15

4/6
10/10

9/10

0/15

0/15
9/10

Figure : Flow with value

I Capacity Constraint: For each edge
e, f (e) ≤ c(e)

I Conservation Constraint: For each
vertex v 6= s, t

∑

e into v

f (e) =
∑

e out of v

f (e)

More Definitions and Notation

Notation

I The inflow into a vertex v is f in(v) =
∑

e into v f (e) and the
outflow is f out(v) =

∑
e out of v f (e)

I For a set of vertices A, f in(A) =
∑

e into A f (e). Outflow
f out(A) is defined analogously

Definition
For a network G = (V ,E) with source s, the value of flow f is
defined as v(f) = f out(s)

A Path Based Definition of Flow

Intuition: flow goes from source s to sink t along a path.

P: set of all paths from s to t. |P| can be exponential in n!

Definition
A flow in a network G = (V ,E), is a function f : P → R≥0 such
that

I Capacity Constraint: For each edge e, total flow on e is
≤ c(e). ∑

p∈Pe

f (p) ≤ c(e)

I Conservation Constraint: No need! Automatic.

Value of flow:
∑

p∈P f (p)

Path based flow implies Edge based flow

Lemma
Given a path based flow f : P → R≥0 there is an edge based flow
f ′ : E → R≥0 of the same value.

Proof.
For each edge e define f ′(e) =

∑
p:e∈p f (p).

Verify capacity and conservation constraints for f ′.

Edge based flow to Path based Flow

Flow Decomposition:

Lemma
Given an edge based flow f ′ : E → R≥0, there is a path based flow
f : P → R≥0 of same value. Moreover, f assigns non-negative flow
to at most m + n paths where |E | = m and |V | = n. Given f ′, the
path based flow can be computed in O(mn) time.

Proof Idea.

I remove all edges with f ′(e) = 0

I find a path p from s to t

I assign f (p) to be mine∈p f ′(e)

I reduce f ′(e) for all e ∈ p by f ′(e)

I repeat until no path from s to t

Edge vs Path based Definitions of Flow

Edge based flows:

I compact representation, only m values to be specified

I need to check flow conservation explicitly at each internal
node

Path flows:

I in some applications, paths more natural

I not compact

I no need to check flow conservation constraints

Equivalence shows that we can go back and forth easily.

The Maximum-Flow Problem

Problem

Input A network G with capacity c and source s and sink t

Goal Find flow of maximum value

Question: Given a flow network, what is an upper bound on the
maximum flow between source and sink?

Cuts

Definition
Given a flow network an s − t cut is a set of edges E ′ ⊂ E such
that removing E ′ disconnects s from t: in other words there is no
directed s → t path in E − E ′.
The capacity of cut E ′ is

∑
e∈E ′ c(e).

s

1

2

3

4

5

6

t

15

5

10

30

8

4

9

4
15

6
10

10

15

15
10

Caution: cut may leave t → s paths!

Minimum Cut

Definition
Given a flow network an s − t minimum cut is a cut E ′ of smallest
capacity amongst all s − t cuts.

s

1

2

3

4

5

6

t

15

5

10

30

8

4

9

4
15

6
10

10

15

15
10

Observation: exponential number of s − t cuts and no “easy”
algorithm to find a minimum cut.

The Minimum-Cut Problem

Problem

Input A network G with capacity c and source s and sink t

Goal Find the capacity of a minimum s − t cut

Flows and Cuts

Lemma
For any s − t cut E ′, maximum s − t flow ≤ capacity of E ′.

Proof.
Formal proof easier with path based definition of flow.
Suppose f : P → R≥0 is a max-flow.

Every path p ∈ P contains an edge e ∈ E ′. Why?
Assign each path p ∈ P to exactly on edge e ∈ E ′.
Let Pe be paths assigned to e ∈ E ′. Then

v(f) =
∑

p∈P
f (p) =

∑

e∈E ′

∑

p∈Pe

f (p)

≤
∑

e∈E ′
c(e)

Flows and Cuts

Lemma
For any s − t cut E ′, maximum s − t flow ≤ capacity of E ′.

Corollary

Maximum s − t flow ≤ minimum s − t cut.

Max-Flow Min-Cut Theorem

Theorem
In any flow network the maximum s − t flow is equal to the
minimum s − t cut.

Can compute minimum-cut from maximum flow and vice-versa!
Proof coming shortly.

Many applications:

I optimization

I graph theory

I combinatorics

The Maximum-Flow Problem

Problem

Input A network G with capacity c and source s and sink t

Goal Find flow of maximum value

Greedy Approach

s

v

u

t

10/10

10/20

10/20

10/10

10/30

1. Begin with f (e) = 0 for each edge

2. Find a s-t path P with f (e) < c(e) for
every edge e ∈ P

3. Augment flow along this path

4. Repeat augmentation for as long as
possible.

Greedy Approach: Issues

s

v

u

t

10

20/20

20/20

10

20/30

1. Begin with f (e) = 0 for each edge

2. Find a s-t path P with f (e) < c(e) for
every edge e ∈ P

3. Augment flow along this path

4. Repeat augmentation for as long as
possible.

Need to “push-back” flow along edge (u, v)

Residual Graph

Definition
For a network G = (V ,E) and flow f , the residual graph
Gf = (V ′,E ′) of G with respect to f is

I V ′ = V

I Forward Edges: For each edge e ∈ E with f (e) < c(e), we
e ∈ E ′ with capacity c(e)− f (e)

I Backward Edges: For each edge e = (u, v) ∈ E with
f (e) > 0, we (v , u) ∈ E ′ with capacity f (e)

Residual Graph Example

s

v

u

t

0/10

20/20

20/20

0/10

20/30

Figure : Flow in red edges

s

v

u

t

10

20

20

10

20 10

Figure : Residual Graph

Ford-Fulkerson Algorithm

for every edge e, f(e) = 0

Gf is residual graph of G with respect to f

while Gf has a simple s-t path

let P be simple s-t path in Gf

f = augment(f,P)

Construct new residual graph Gf

augment(f,P)

let b be bottleneck capacity, i.e., min capacity of edges in P

for each edge e in P

if e is a forward edge

f(e) = f(e) + b

else (* e is a backward edge *)

f(e) = f(e) - b

return f

Properties about Augmentation

Lemma
If f is a flow and P is a simple s-t path in Gf , then
f ′ = augment(f ,P) is also a flow.

Lemma
At every stage of the Ford-Fulkerson algorithm, the flow values
f (e) and the residual capacities in Gf are integers

Proof.
Initial flow and residual capacities are integers. Suppose lemma
holds for j iterations. Then in j + 1st iteration, minimum capacity
edge b is an integer, and so flow after augmentation is an
integer.

Progress in Ford-Fulkerson

Proposition

Let f be a flow and f ′ be flow after one augmentation. Then
v(f) < v(f ′)

Proof.
Let P be an augmenting path, i.e., P is a simple s-t path in
residual graph

I First edge e in P must leave s

I Original network G has no incoming edges to s; hence e is a
forward edge

I P is simple and so never returns to s

I Thus, value of flow increases by the flow on edge e

Termination Proof

Theorem
Let C =

∑
e out of s c(e). Ford-Fulkerson algorithm terminates

after finding at most C augmenting paths

Proof.
The value of the flow increases by at least 1 after each
augmentation. Maximum value of flow is at most C .

Running time

I Number of iterations = O(C)

I Number of edges in Gf ≤ 2m

I Time to find augmenting path is O(n + m)

I Running time is O(C (n + m)) = O(mC)

Efficiency of Ford-Fulkerson

Running time = O(mC) is not polynomial. Can the upper bound
be achieved?

s

v

u

t

C

C

C

C

1 s

v

u

t

C

C

1

C − 1

1

C − 1

1

Correctness of Ford-Fulkerson Augmenting Path Algorithm

Question: When the algorithm terminates, is the flow computed
the maximum s − t flow?

Proof idea: show a cut of value equal to the flow. Also shows that
maximum flow is equal to minimum cut!

Definition
Given a flow network an s − t cut is a set of edges E ′ ⊂ E such
that removing E ′ disconnects s from t: in other words there is no
directed s → t path in E − E ′.
The capacity of cut E ′ is

∑
e∈E ′ c(e).

Cuts as Vertex Partitions

Let A ⊂ V such that

I s ∈ A, t 6∈ A

I B = V − A and hence t ∈ B

Define (A,B) = {(u, v) ∈ E | u ∈ A, v ∈ B}
Claim
(A,B) is an s − t cut.

s

1

2

3

4

5

6

t

15

5

10

30

8

4

9

4
15

6
10

10

15

15
10

Cuts as Vertex Partitions

Lemma
Suppose E ′ is an s − t cut. Then there is a cut (A,B) such that
(A,B) ⊆ E ′.

Proof.
E ′ is an s − t cut implies no path from s to t in (V ,E − E ′).
Let A be set of all nodes reachable by s in (V ,E − E ′). By above,
t 6∈ A.
And also (A,B) ⊆ E ′. Why?

Corollary

Every minimal s − t cut E ′ is a cut of the form (A,B).

Ford-Fulkerson Correctness

Lemma
If there is no s-t path in Gf then there is some cut (A,B) such
that v(f) = c(A,B)

Proof.
Let A be all vertices reachable from s in Gf ; B = V \ A

s

u

v′

u′

v

t

I s ∈ A and t ∈ B. So (A,B) is an s-t
cut in G

I If e = (u, v) ∈ G with u ∈ A and
v ∈ B, then f (e) = c(e) because
otherwise v is reachable from s

Lemma Proof Continued

Proof.

s

u

v′

u′

v

t

I If e = (u′, v ′) ∈ G with u′ ∈ B and
v ′ ∈ A, then f (e) = 0 because
otherwise u′ is reachable from s

I Thus,
v(f) = f out(A)− f in(A) = c(A,B)

Ford-Fulkerson Correctness

Theorem
The flow returned by the algorithm is the maximum flow.

Proof.

I For any flow f and s-t cut (A,B), v(f) ≤ c(A,B)

I For flow f ∗ returned by algorithm, v(f ∗) = c(A∗,B∗) for
some s-T cut (A∗,B∗)

I Hence, f ∗ is maximum

Max-Flow Min-Cut Theorem and Integrality of Flows

Theorem
For any network G , the value of a maximum s − t flow is equal to
the capacity of the minimum s-t cut.

Theorem
For any network G with integer capacities, there is a maximum
s − t flow that is integer valued.

Efficiency of Ford-Fulkerson

Running time = O(mC) is not polynomial. Can the upper bound
be achieved?

s

v

u

t

C

C

C

C

1 s

v

u

t

C

C

1

C − 1

1

C − 1

1

Augmenting Paths with Large Bottleneck Capacity

I Pick augmenting paths with largest bottleneck capacity in
each iteration of Ford-Fulkerson

I How do we find path with largest bottleneck capacity?
I Assume we know ∆ the bottleneck capacity
I Remove all edges with residual capacity ≤ ∆
I Check if there is a path from s to t
I Do binary search to find largest ∆
I Running time: O(m log C)

Algorithm works in polynomial time but can devise a simpler
algorithm.

Definition
Given graph G , s − t flow f and a parameter ∆, the graph Gf (∆)
is the residual graph with all edges in Gf with residual capacity
< ∆ removed.

Capacity Scaling Algorithm

for all edges e, f(e) = 0

∆ = largest power of 2 smaller than maximum capacity edge in G

while ∆ ≥ 1
while there is a simple s-t path in Gf (∆)

let P be simple s-t path in Gf (∆)
f = augment(f,P)

update Gf (∆)
∆ = ∆/2

I Flows and residual capacities are always integral

I When ∆ = 1, Gf (∆) = Gf ; so on termination f is max-flow

I Outermost loop runs for at most dlog Ce+ 1

I Each augmentation increases flow by at least ∆

Running Time Analysis of Capacity Scaling Algorithm

I In each scaling phase there are at most 2m augmentations

I Each augmenting path can be found in O(m) time

I There are at most dlog Ce+ 1 scaling phases

I Total time is O(m2 log C)

Paths in Gf (∆) and max-flows

Lemma
Let f be such that Gf (∆) does not have an s-t augmenting path.
Then maximum flow is at most v(f) + m∆.

Proof.
We will show that there is a cut (A,B) of capacity at most
v(f) + m∆

I Let A be all vertices reachable from s in Gf (∆), and let
B = V \ A; (A,B) is an s-t cut

v(f) =
∑

e out of A f (e)−∑
e into A f (e)

≥∑
e out of A[c(e)−∆]−∑

e into A ∆
=

∑
e out of A c(e)−∑

e out of A ∆−∑
e into A ∆

≥ c(A,B)−m∆

Augmentations per Scaling Phase

Proposition

There are at most 2m augmentation paths per scaling phase.

Proof.

I Let f be flow at end of previous scaling phase, i.e., with
scaling 2∆

I If f ∗ is max-flow, then v(f ∗) ≤ v(f) + m(2∆)

I Since each augmentation in new phase increases flow by ∆,
there can be at most 2m augmentations to f

Removing Dependence on C

I [Edmonds-Karp, Dinitz] Picking augmenting paths with fewest
number of edges yields a O(m2n) algorithm, i.e., independent
of C !

I Further improvements can yield algorithms running in
O(mn log n), or O(n3)

Finding a Minimum Cut

Question: How do we find an actual minimum s − t cut?
Proof gives the algorithm!

I Compute an s − t maximum flow f in G

I Obtain the residual graph Gf

I Find the nodes A reachable from s in Gf

I Output the cut (A,B) = {(u, v) | u ∈ A, v ∈ B}
Running time is essentially the same as finding a maximum flow.

Network Flow Facts to Remember

Flow network: directed graph G , capacities c , source s, sink t
I maximum s − t flow can be computed

I using Ford-Fulkerson algorithm in O(mC) time when
capacities are integral and C is an upper bound on the flow

I using capacity scaling algorithm in O(m2 log C) time when
capacities are integral

I using Edmonds-Karp algorithm in O(m2n) time when
capacities are rational (strongly polynomial time algorithm)

I if capacities are integral then there is a maximum flow that is
integral and above algorithms give an integral max flow

I given a flow of value v , can decompose into O(m + n) flow
paths of same total value v . integral flow implies integral flow
on paths

I maximum flow is equal to the minimum cut and minimum cut
can be found in O(m + n) time given any maximum flow

