
Matching

Input Given a (undirected) graph G = (V ,E)

Goal Find a matching of maximum cardinality

I A matching is M ⊆ E such that at most one
edge in M is incident on any vertex

Bipartite Matching

Input Given a bipartite graph G = (L ∪ R,E)

Goal Find a matching of maximum cardinality

Figure : Maximum matching has 4 edges

Reduction to Max-Flow

Max-Flow Construction
Given graph G = (L ∪ R,E) create flow-network G ′ = (V ′,E ′) as
follows:

I V ′ = L ∪ R ∪ {s, t} where s and t are
the new source and sink

I Direct all edges in E from L to R, and
add edges from s to all vertices in L
and from each vertex in R to t

I Capacity of every edge is 1

Correctness: Matching to Flow

Proposition

If G has a matching of size k then G ′ has a flow of value k.

Proof.
Let M be matching of size k . Construct flow that send on unit
along each edge in M, and in edges to and from vertices of L ∪ R
that has some edge in M. This flow has value k .

Correctness: Flow to Matching

Proposition

If G ′ has a flow of value k then G has a matching of size k.

Proof.
Consider flow f of value k .

I Observe that f is an integral flow. Thus each edge has flow 1
or 0

I Consider the set M of edges from L to R that have flow 1
I M has k edges because value of flow is equal to the number of

non-zero flow edges crossing cut (L ∪ {s},R ∪ {t})
I Each vertex has at most one edge in M incident upon it

Correctness of Reduction

Theorem
The maximum flow value in G ′ = maximum cardinality of
matching in G

Consequence

Thus, to find maximum cardinality matching in G , we construct G ′

and find the maximum flow in G ′

Running Time

For graph G with n vertices and m edges G ′ has O(n + m) edges,
and O(n) vertices.

I Generic Ford-Fulkerson: Running time is O(mC) = O(nm)
since C = n

I Capacity scaling: Running time is O(m2 log C) = O(m2 log n)

Better known running times: O(m
√

n) and O(n2.344)

Perfect Matchings

Definition
A matching M is said to be perfect if every vertex has one edge in
M incident upon it.

Figure : This graph does not have a perfect matching

Characterizing Perfect Matchings

Problem
When does a bipartite graph have a perfect matching?

I Clearly |L| = |R|
I Are there any necessary and sufficient conditions?

A Necessary Condition

Lemma
If G = (L ∪ R,E) has a perfect matching then for any X ⊆ L,
|N(X)| ≥ |X |, where N(X) is the set of neighbors of vertices in X

Proof.
Since G has a perfect matching, every vertex of X is matched to a
different neighbor, and so |N(X)| ≥ |X |

Hall’s Theorem

Theorem (Frobenius-Hall)

Let G = (L ∪ R,E) be a bipartite graph with |L| = |R|. G has a
perfect matching if and only if for every X ⊆ L, |N(X)| ≥ |X |
One direction is the necessary condition.
For the other direction we will show the following:

I create flow network G ′ from G

I if |N(X)| ≥ |X | for all X , show that minimum s − t cut in G ′

is of capacity n = |L| = |R|
I implies that G has a perfect matching

Proof of Sufficiency

Assume |N(X)| ≥ |X | for each X ∈ L. Then show that min s − t
cut in G ′ is of capacity n.

Let (A,B) be an arbitrary s − t cut in G ′

I let X = A ∩ L and Y = A ∩ R

I cut capacity is equal to (|L| − |X |) + |Y |+ |N(X)− Y |
I |N(X)− Y | ≥ |N(X)| − |Y | and by assumption |N(X)| ≥ |X |

and hence |N(X)− Y | ≥ |X | − |Y |
I cut capacity is therefore at least
|L| − |X |+ |Y |+ |X | − |Y | ≥ |L| = n.

Application: assigning jobs to people

I n jobs or tasks

I m people

I for each job a set of people who can do that job

I for each person a limit on number of jobs

I Goal: find an assignment of jobs to people so that all jobs are
assigned and no person is overloaded

Reduce to max-flow similar to matching.

Arises in many settings. Using minimum-cost flows can also handle
the case when assigning a job i to person j costs cij and goal is
assign all jobs but minimize cost of assignment.

Matchings in General Graphs

Matchings in general graphs more complicated.

There is a polynomial time algorithm to compute a maximum
matching in a general graph. Running time is O(m

√
n).

Edge-Disjoint Paths in Directed Graphs

Definition

A set of paths is edge disjoint if no two
paths share an edge.

Problem
Given a directed graph with two special vertices s and t, find the
maximum number of edge disjoint paths from s to t

Applications: Fault tolerance in routing — edges/nodes in
networks can fail. Disjoint paths allow for planning backup routes
in case of failures.

Reduction to Max-Flow

Problem
Given a directed graph G with two special vertices s and t, find
the maximum number of edge disjoint paths from s to t

Reduction
Consider G as a flow network with edge capacities 1, and find
max-flow.

Correctness of Reduction

Lemma
If G has k edge disjoint paths then there is a flow of vlaue k

Proof.
Set f (e) = 1 if e belongs to the set of edge disjoint paths;
other-wise set f (e) = 0. This defines a flow of value k .

Lemma
If G has a flow of value k then there are k edge disjoint paths.

Proof.
Left as exercise.

Running Time

Theorem
The number of edge disjoint paths in G can be found in O(mn)
time

Run Ford-Fulkerson algorithm. Maximum possible flow is n and
hence run-time is O(nm).

Menger’s Theorem

Theorem (Menger)

Let G be a directed graph. Size of the minimum-cut between s
and t is equal to the number of edge-disjoint paths in G between s
and t.

Proof.
Maxflow-mincut theorem and integrality of flow.

Menger proved his theorem before Maxflow-Mincut theorem!
Maxflow-Mincut theorem is a generalization of Menger’s theorem
to capacitated graphs.

Edge Disjoint Paths in Undirected Graphs

Problem
Given an undirected graph G , find the maximum number of edge
disjoint paths in G

Reduction:

I create directed graph H by adding directed edges (u, v) and
(v , u) for each edge uv in G .

I compute maximum s − t flow in H

Problem: Both edges (u, v) and (v , u) may have non-zero flow!

Fixing the Solution: Acyclicit of Flows

Proposition

In any flow network, there is a maximum flow f that is acyclic.
Further if all the capacities are integeral, then there is such a flow
f that is also integeral.

Proof.

I Let f be a maximum flow. E ′ = {e ∈ E | f (e) > 0}
I Suppose there is a directed cycle C in E ′

I Let e ′ be the edge in C with least amount of flow

I For each e ∈ C , reduce flow f (e ′). Remains a flow

I flow on e ′ is reduced to 0

I Claim: flow value from s to t does not change (why?)

I iterate till no cycles

Multiple Sources and Sinks

I Directed graph G with edge capacities c(e)

I source nodes S = {s1, s2, . . . , sk}
I sink nodes t1, t2, . . . , t`
I sources and sinks are disjoint

Maximum Flow: send as much flow as possible from the sources to
the sinks. Sinks don’t care which source they get flow from.

Minimum Cut: find a minimum capacity set of edge E ′ such that
removing E ′ disconnects every source from every sink.

Reduction to Single-Source Single-Sink

I Add a source node s and a sink node t

I Add edges (s, s1), (s, s2), . . . , (s, sk)

I Add edges (t1, t), (t2, t), . . . , (t`, t)

I Set the capacity of the new edges to be ∞

Supplies and Demands

A further generalization:

I source si has a supply of Si ≥ 0

I sink tj has a demand of Dj ≥ 0 units

Question: is there a flow from source to sinks such that supplies
are not exceeded and demands are met?

