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Analysing I/O-efficiency

main memory
of size M

external memory
(disk)

of infinite size

1 “I/O” transfers

block of size B
CPU

CPU only operates on data in main memory (for free)

I/O-efficiency = number of I/O’s as function of M , B, and grid size N
(sometimes assume M ≥ c ·B2)

Flow accumulation: näıve algorithm

Goal: compute
flow accumulation
for each cell c

=

#cells from which
water passes
through c

=

size of
tree rooted at c
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Goal: compute
flow accumulation
for each cell c

=

#cells from which
water passes
through c

=

size of
tree rooted at c

11

2

5

2

1

1

2

61

1

1

5

5

5

5

5

5

5

Flow accumulation: näıve algorithm

Goal: compute
flow accumulation
for each cell c

=

#cells from which
water passes
through c

=

size of
tree rooted at c

Row-by-row scan
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Goal: compute
flow accumulation
for each cell c

=

#cells from which
water passes
through c

=

size of
tree rooted at c



Row-by-row scan

1 1 1 1 3 35 1

1 2 2 2 1 32 1

1 6 1 1 1 30 1

1 4 7 2 28 1 1

1 1 13 1 22 1 1

1 1 1 19 1 1 1

3 3 1 1 4 3 1

Running time:
Θ(N)

Goal: compute
flow accumulation
for each cell c

=

#cells from which
water passes
through c

=

size of
tree rooted at c

N = #cells in grid

Row-by-row scan

Row-by-row scan

N = #cells in grid

Θ(N) I/O’s in the worst case ≈ 1 year for 28 GB grid

Z-order scan
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Z-order scan

√
B

Z-order scan on Z-order file

B = #bytes in one I/O

While working
on a block,
have its
neighbours in
memory too
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While working
on a block,
have its
neighbours in
memory too

Z-order scan on Z-order file

B = #bytes in one I/O

√
B

Only long
paths require
additional
swapping

Z-order scan on Z-order file

B = #bytes in one I/O

While working
on a block,
have its
neighbours in
memory too

Worst-case terrains vs. real terrains

Worst-case, size N Worst-case, size 4N

Realistic, size N Realistic, size 4N

Ω(
√
N) big bends

Θ(1) big bends

N = #cells in grid

Worst-case terrains vs. real terrains

Worst-case, size N Worst-case, size 4N

Q′ = Q scaled by factor 3.

Far cells of Q: cells on boundary of Q′ where water from Q collects.

In the worst case, maximum number of far cells grows with resolution.

N = #cells in grid



Worst-case terrains vs. real terrains

Realistic, size N Realistic, size 4N

Q′ = Q scaled by factor 3.

Far cells of Q: cells on boundary of Q′ where water from Q collects.

Confluence assumption: number of far cells for any square Q ≤ constant γ

N = #cells in grid

Z-order scan on Z-order file

√
B

Only long
paths require
additional
swapping

Θ(N/B) I/Os

N/B blocks ×
γ swaps ×
9-block window
=
Θ(N/B) I/Os

≈
few hours

N = #cells in grid B = #bytes in one I/O

While working
on a block,
have its
neighbours in
memory too

Flow accumulation by scanning in practice

algorithm file order worst case ‘realistic’ bytes per cell time (mins)

bytes of disk I/O per cell calculated based on: N = 232, M = 1 GB, B = 16 to 64KB

time: 3 GHz Pentium, one disk for data + scratch, N = 3.5 · 109 (Neuse), M = 1 GB

row-by-row scan

Z-order scan

Z-order scan

*) needs tall cache: M ≥ cB2

row by row

row by row

Z-order

O(N)

O(N)

O(N/
√
B)

O(N/B)∗

O(N/B)

O(N/
√
B) tenthousands

thousands

hundreds

111

41

Easy implementation:
• needs efficient conversion (row nr., column nr.) ↔ index in Z-order
• Z-order scan→ good caching by OS, no need to tune to hardware / implement I/O-control

N = #cells in grid B = #bytes in one I/O

Z-order-traversal has many other applications, e.g.:
• I/O-efficient matrix operations
• I/O-efficient algorithms and data structures for geographic maps

theoretical analysis experiments

(row, column) ↔ Z-index
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(row, column) ↔ Z-index

Quick conversion through look-ups in tables of size
√
N (example:

√
N = 16)

spread rowdigits coldigits
0000 0000000 00 00
0001 0000001 00 01
0010 0000100 01 00
0011 0000101 01 01
0100 0010000 00 10
0101 0010001 00 11
0110 0010100 01 10
0111 0010101 01 11
1000 1000000 10 00
1001 1000001 10 01
1010 1000100 11 00
1011 1000101 11 01
1100 1010000 10 10
1101 1010001 10 11
1110 1010100 11 10
1111 1010101 11 11

row number column number

look up in
spread

row number column number

look up in
spread

append 0

add

Z-index

first half second half

look up in
rowdigits

look up in
rowdigits

look up in
coldigits

look up in
coldigits

concatenate concatenate

0110 0011

0010100 0000101

00101000

00101101

0010 1101

01 00 10 11

0110 0011can be adapted to non-square grids

Flow accumulation: separator-based algorithm

Θ(
√
M)

Separator cells: each
Θ(
√
M)-th row/column

→
divide grid into Θ(N/M)
subgrids of size Θ(M)

N = #cells in grid M = main memory size
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11 1 1 1 1 1
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1 1 1

1 1 1

1 1 1

1 1 1
Θ(
√
M)

input

separator
flow accumul.

separator
flow directions

1. move flow from interior
of subgrids to separators
and compute flow connec-
tions between separators

Flow accumulation: separator-based algorithm

N = #cells in grid M = main memory size
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1. move flow from interior
of subgrids to separators
and compute flow connec-
tions between separators
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√
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separator
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separator
flow directions

Flow accumulation: separator-based algorithm

N = #cells in grid M = main memory size
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Flow accumulation: separator-based algorithm

N = #cells in grid M = main memory size
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Flow accumulation: separator-based algorithm

N = #cells in grid M = main memory size
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Flow accumulation: separator-based algorithm

N = #cells in grid M = main memory size
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1 1 1

1. move flow from interior
of subgrids to separators
and compute flow connec-
tions between separators

Θ(
√
M)

separator
flow accumul.

separator
flow directions

Flow accumulation: separator-based algorithm

N = #cells in grid M = main memory size
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Flow accumulation: separator-based algorithm
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Flow accumulation: separator-based algorithm
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Flow accumulation: separator-based algorithm
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Flow accumulation: separator-based algorithm

11 1 1 3 35 1

41 7 2 28 1 1

33 1 1 4 3 1

1 19 1

1 1 1

1 1 1

1 2 1

1. move flow from interior
of subgrids to separators
and compute flow connec-
tions between separators

2. compute flow accumula-
tion of separators

3. move flow from separa-
tors into subgrids

1. Θ(N/M) subgrids ×
Θ(M/B +

√
M) =

Θ(M/B) =
Θ(N/B) I/O’s

2. linear-time algo, input
Θ(N/

√
M) = O(N/B)

3. Θ(N/B) I/O’s
(like phase 1)

1. 1 byte of I/O per cell

2. no I/O in practice

3. 9 bytes of I/O per cell

Total: 10 bytes per cell
if grid stored in Z-order

Total: 20 to 60 bytes
if grid stored row by row
(for 1/4 ≤M/B2 ≤ 4)

Flow accumulation: separator-based algorithm

N = #cells in grid M = main memory size B = #bytes in one I/O M ≥ cB2

Flow accumulation: Z-order scan versus separators

algorithm file order worst case ‘realistic’ bytes per cell time (mins)

row-by-row scan

Z-order scan

Z-order scan

separator-based

separator-based

row by row

row by row

Z-order

row by row

Z-order

O(N)

O(N)

O(N/
√
B)

O(N/B)∗

O(N/B)

O(N/B)∗

O(N/B)

O(N/
√
B) tenthousands

thousands

hundreds

20 to 60

10

111

41

39

should try!

bytes of disk I/O per cell calculated based on: N = 232, M = 1 GB, B = 16 to 64KB

time: 3 GHz Pentium, one disk for data + scratch, N = 3.5 · 109 (Neuse), M = 1 GB

*) needs tall cache: M ≥ cB2

Other applications of separators:
minimum spanning trees & flooding; BFS & flow routing; single-source shortest paths.

Easy implementation: no need to tune to hardware / implement I/O-control

Implementation must explicitly adapt subgrid size to available memory M

N = #cells in grid M = main memory size B = #bytes in one I/O

theoretical analysis experiments
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output

pqueue

sort

Time-forward processing (Arge et al.)

Goal: compute
flow accumulation
for each cell c
=
#cells from which
water passes
through c
=
size of
tree rooted at c

input

output

pqueue

1

Time-forward processing (Arge et al.)

Goal: compute
flow accumulation
for each cell c
=
#cells from which
water passes
through c
=
size of
tree rooted at c

input

output

pqueue

1 1

1

1 11 1 1 1 1 1 1

1 111 11 1
1

Time-forward processing (Arge et al.)

Goal: compute
flow accumulation
for each cell c
=
#cells from which
water passes
through c
=
size of
tree rooted at c

input

output

pqueue

1 1 1 11 1 1 1 1 1 1 2 2 7 10 14

Time-forward processing (Arge et al.)

Goal: compute
flow accumulation
for each cell c
=
#cells from which
water passes
through c
=
size of
tree rooted at c



output

1 1 1 11 1 1 1 1 1 1 2 2 7 10 14
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1

1

1
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1

sort

Time-forward processing (Arge et al.)

Goal: compute
flow accumulation
for each cell c
=
#cells from which
water passes
through c
=
size of
tree rooted at c

Time-forward processing

Worst-case I/O’s: Θ(N
B

logM/B
N
B

) (Arge et al.)

I/O-volume per grid cell (optimistic):
Sorting grid into list of 2× 2× 24 = 96 bytes
(xy-location, topological nr., out-neighbour top. nr.)
Flow accumulation, input: 24 bytes
Flow accumulation, output: 16 bytes
(xy-location, flow)
Sorting output into grid 2× 2× 16 = 64 bytes
Total: 200 bytes

I/O-volume per grid cell (pessimistic):
Sorting grid into list of 3× 2× 24 = 144 bytes
(xy-location, topological nr., out-neighbour top. nr.)
Flow accumulation, input: 24 bytes
Flow accumulation, priority queue: 2× 16 = 32 bytes
Flow accumulation, output: 16 bytes
(xy-location, flow)
Sorting output into grid 3× 2× 16 = 96 bytes
Total: 312 bytes

N = #cells in grid M = main memory size B = #bytes in one I/O

mergesort, recursion depth = 2

each level: read once, write once

24 bytes per element

assume each element written once, read once

16 bytes per element (key + amount)

topological number = sorting key ≈ elevation

mergesort, recursion depth = 3

mergesort recursion depth = 2; priority queue fits in memory

mergesort recursion depth = 3; priority queue does not fit

Results on flow accumulation

time-fwd proc. any O(N
B logM/B

N
B ) 70 to 300 sev. hundred

bytes of disk I/O per cell calculated based on: N = 232, M = 1 GB, B = 16 to 64KB

time: 3 GHz Pentium, one disk for data + scratch, N = 3.5 · 109 (Neuse), M = 1 GB

*) needs tall cache: M ≥ cB2

N = #cells in grid M = main memory size B = #bytes in one I/O

algorithm file order worst case ‘realistic’ bytes per cell time (mins)

row-by-row scan

Z-order scan

Z-order scan

separator-based

separator-based

row by row

row by row

Z-order

row by row

Z-order

O(N)

O(N)

O(N/
√
B)

O(N/B)∗

O(N/B)

O(N/B)∗

O(N/B)

O(N/
√
B) tenthousands

thousands

hundreds

20 to 60

10

111

41

39

should try!

Easy implementation: no need to tune to hardware / implement I/O-control

Implementation must explicitly adapt subgrid size to available memory M

Flexible; requires I/O-efficient sorting and priority queue

theoretical analysis experiments

Extensions / other applications

Z-order traversal (easy to implement, no tuning to hardware):

• flow accumulation (single-directional flow)

• visibility maps

• matrix operations

• spatial data structures

Separator-based technique (tuned to available memory size):

• flooding local minima (minimum spanning trees)

• flow accumulation (single-directional flow)

• (?) single-source shortest paths

Time-forward processing (using library for I/O-efficient priority queue):

• flow accumulation (multi-directional flow, also irregular network models)

Confluence constant for water flow ≈ highway dimension for shortest paths (Abraham et al.)http://haverkort.net
→ research
→ algorithms for geographic elevation models and I/O-efficient graph algorithms


