
Edmonds-Karp algorithm
Edmonds-Karp: modify algFordFulkerson so it always
returns the shortest augmenting path in Gf .
Definition
For a flow f , let δf (v) be the length of the shortest path from
the source s to v in the residual graph Gf . Each edge is
considered to be of length 1.
Assume the following key lemma:
Lemma
∀v ∈ V \ {s, t} the function δf (v) increases.

The disappearing/reappearing lemma
Lemma
During execution Edmonds-Karp, edge (u → v) might
disappear/reappear from Gf at most n/2 times, n = |V (G)|.
Proof.

1. iteration when edge (u → v) disappears.
2. (u → v) appeared in augmenting path π.
3. Fully utilized: cf (π) = cf (uv). f flow in beginning of

iter.
4. till (u → v) “magically” reappears.
5. ... augmenting path σ that contained the edge (v → u).
6. g : flow used to compute σ.
7. We have: δg(u) = δg(v)+ 1 ≥ δf (v)+ 1 = δf (u)+ 2
8. distance of s to u had increased by 2. QED.

Comments...
1. δf (u) might become infinite
2. Then u is no longer reachable from s.
3. By monotonicity, the edge (u → v) will never appear

again.

Observation
For every iteration/augmenting path of Edmonds-Karp
algorithm, at least one edge disappears from the residual
graph Gf .

Edmonds-Karp # of iterations
Lemma
Edmonds-Karp handles O(nm) augmenting paths before it
stops.
Its running time is O

(
nm2

)
, where n = |V (G)| and

m = |E(G)|.
Proof.

1. Every edge might disappear at most n/2 times.
2. At most nm/2 edge disappearances during execution

Edmonds-Karp.
3. In each iteration, by path augmentation, at least one edge

disappears.
4. Edmonds-Karp algorithm perform at most O(mn)

iterations.
5. Computing augmenting path takes O(m) time.
6. Overall running time is O

(
nm2

)
.

Shortest distance increases during Edmonds-Karp
execution

Lemma
Edmonds-Karp run on G = (V ,E), s, t, then
∀v ∈ V \ {s, t}, the distance δf (v) in Gf increases
monotonically.

Proof
1. By Contradiction. f : flow before (first fatal) iteration.
2. g : flow after.
3. v : vertex s.t. δg(v) is minimal, among all counter

example vertices.
4. v : δg(v) is minimal and δg(v) < δf (v).

Proof continued...
1. π = s → · · · → u → v : shortest path in Gg from s to

v .
2. (u → v) ∈ E(Gg), and thus δg(u) = δg(v)− 1.
3. By choice of v : δg(u) ≥ δf (u).

(i) If (u → v) ∈ E(Gf) then

δf (v) ≤ δf (u) + 1 ≤ δg(u) + 1 = δg(v)− 1 + 1 = δg(v).

This contradicts our assumptions that
δf (v) > δg(v).

Proof continued II
(ii) f (u → v) /∈ E(Gf):

1. π used in computing g from f contains (v → u).
2. (u → v) reappeared in the residual graph Gg (while not

being present in Gf).
3. =⇒ π pushed a flow in the other direction on the edge

(u → v). Namely, (v → u) ∈ π.
4. Algorithm always augment along the shortest path. By

assumption δg(v) < δf (v), and definition of u:
δf (u) = δf (v) + 1 > δg(v) = δg(u) + 1,

5. =⇒ δf (u) > δg(u)
=⇒ monotonicity property fails for u.

But: δg(u) < δg(v). A contradiction.

