Edmonds-Karp algorithm

Edmonds-Karp: modify **algFordFulkerson** so it always returns the shortest augmenting path in G_f .

Definition

For a flow f, let $\delta_f(v)$ be the length of the shortest path from the source s to v in the residual graph G_f . Each edge is considered to be of length 1.

Assume the following key lemma:

Lemma

 $\forall \mathbf{v} \in \mathbf{V} \setminus \{\mathbf{s}, \mathbf{t}\}$ the function $\delta_f(\mathbf{v})$ increases.

Comments...

- 1. $\delta_f(u)$ might become infinite
- 2. Then \boldsymbol{u} is no longer reachable from \boldsymbol{s} .
- 3. By monotonicity, the edge $(u \rightarrow v)$ will never appear again.

Observation

For every iteration/augmenting path of Edmonds-Karp algorithm, at least one edge disappears from the residual graph G_f .

The disappearing/reappearing lemma

Lemma

During execution Edmonds-Karp, edge $(u \rightarrow v)$ might disappear/reappear from G_f at most n/2 times, n = |V(G)|.

Proof.

- 1. iteration when edge $(u \rightarrow v)$ disappears.
- 2. $(u \rightarrow v)$ appeared in augmenting path π .
- 3. Fully utilized: $c_f(\pi) = c_f(uv)$. *f* flow in beginning of iter.
- 4. till $(u \rightarrow v)$ "magically" reappears.
- 5. ... augmenting path σ that contained the edge $(v \rightarrow u)$.
- 6. **g**: flow used to compute σ .
- 7. We have: $\delta_g(u) = \delta_g(v) + 1 \ge \delta_f(v) + 1 = \delta_f(u) + 2$
- 8. distance of \boldsymbol{s} to \boldsymbol{u} had increased by $\boldsymbol{2}$. QED.

Edmonds-Karp # of iterations

Lemma

Edmonds-Karp handles O(nm) augmenting paths before it stops. Its running time is $O(nm^2)$, where n = |V(G)| and m = |E(G)|. Proof.

001.

- 1. Every edge might disappear at most n/2 times.
- 2. At most *nm*/2 edge disappearances during execution Edmonds-Karp.
- 3. In each iteration, by path augmentation, at least one edge disappears.
- 4. Edmonds-Karp algorithm perform at most *O(mn)* iterations.
- 5. Computing augmenting path takes O(m) time.
- 6. Overall running time is $O(nm^2)$.

Shortest distance increases during Edmonds-Karp execution

Lemma

Edmonds-Karp run on $\mathbf{G} = (\mathbf{V}, \mathbf{E})$, \mathbf{s} , \mathbf{t} , then $\forall \mathbf{v} \in \mathbf{V} \setminus {\mathbf{s}, \mathbf{t}}$, the distance $\delta_f(\mathbf{v})$ in \mathbf{G}_f increases monotonically.

Proof

- 1. By Contradiction. *f*: flow before (first fatal) iteration.
- 2. g: flow after.
- 3. \mathbf{v} : vertex s.t. $\delta_g(\mathbf{v})$ is minimal, among all counter example vertices.
- 4. \mathbf{v} : $\delta_g(\mathbf{v})$ is minimal and $\delta_g(\mathbf{v}) < \delta_f(\mathbf{v})$.

Proof continued...

1. $\pi = s \rightarrow \cdots \rightarrow u \rightarrow v$: shortest path in G_g from s to v. 2. $(u \rightarrow v) \in E(G_g)$, and thus $\delta_g(u) = \delta_g(v) - 1$. 3. By choice of v: $\delta_g(u) \ge \delta_f(u)$. (i) If $(u \rightarrow v) \in E(G_f)$ then $\delta_f(v) \le \delta_f(u) + 1 \le \delta_g(u) + 1 = \delta_g(v) - 1 + 1 = \delta_g(v)$. This contradicts our assumptions that

$\delta_f(\mathbf{v}) > \delta_g(\mathbf{v}).$

Proof continued II

(ii) f $(u \rightarrow v) \notin E(G_f)$:

- 1. π used in computing **g** from **f** contains $(\mathbf{v} \rightarrow \mathbf{u})$.
- 2. $(u \rightarrow v)$ reappeared in the residual graph \mathbf{G}_g (while not being present in \mathbf{G}_f).
- 3. $\implies \pi$ pushed a flow in the other direction on the edge $(u \rightarrow v)$. Namely, $(v \rightarrow u) \in \pi$.
- 4. Algorithm always augment along the shortest path. By assumption $\delta_g(\mathbf{v}) < \delta_f(\mathbf{v})$, and definition of \mathbf{u} : $\delta_f(\mathbf{u}) = \delta_f(\mathbf{v}) + 1 > \delta_g(\mathbf{v}) = \delta_g(\mathbf{u}) + 1$,
- 5. $\implies \delta_f(u) > \delta_g(u)$ \implies monotonicity property fails for u. But: $\delta_g(u) < \delta_g(v)$. A contradiction.