

Definition: Circulation with demands

Definition

circulation with demands $\{d_v\}$ is a function $f: E(G) \rightarrow \mathbb{R}^+$:

- Capacity condition: $\forall e \in E$ we have $f(e) \leq c(e)$.
- Conservation condition: $\forall v \in V$ we have $f^{in}(v) f^{out}(v) = d_v$.

Where:

- 1. $f^{in}(v)$ flow into v.
- 2. $f^{out}(v)$: flow out of v.

Problem

Is there a circulation that comply with the demand requirements?

Feasible circulation lemma

Lemma

If there is a feasible circulation with demands $\{d_v\}$, then $\sum_v d_v = 0$.

Proof.

Since it is a circulation, we have that $d_{v} = f^{in}(v) - f^{out}(v)$. Summing over all vertices: $\sum_{v} d_{v} = \sum_{v} f^{in}(v) - \sum_{v} f^{out}(v)$. The flow on every edge is summed twice, one with positive sign, one with negative sign. As such,

$$\sum_{v} d_{v} = \sum_{v} f^{in}(v) - \sum_{v} f^{out}(v) = 0,$$

which implies the claim.

Result: Circulations with demands

Theorem

 $\exists \text{ feasible circulation with demands } \{d_v\} \text{ in } G \iff max-flow \text{ in } H \text{ has value } D.$ Integrality: If all capacities and demands in G are integers, and there is a feasible circulation, then there is a feasible circulation that is integer valued.

Computing circulations

 \exists feasible circulation only if

$$D=\sum_{\nu,d_{\nu}>0}d_{\nu}=\sum_{\nu,d_{\nu}<0}-d_{\nu}.$$

Algorithm for computing circulation

- (A) $\mathbf{G} = (\mathbf{V}, \mathbf{E})$: input flow network with demands on vertices.
- (B) Check $D = \sum_{\nu, d_{\nu} > 0} d_{\nu} = \sum_{\nu, d_{\nu} < 0} d_{\nu}$.
- (C) Create super source s. Connect to all v with $d_v < 0$. Set capacity $(s \rightarrow v)$ to $-d_v$.
- (D) Create super sink t. Connect to all vertices u with $d_u > 0$. Set capacity $(u \rightarrow t)$ to d_u .
- (E) **H**: new network flow. Compute max-flow f in **H** from s to t.
- (F) If $|f| = D \implies \exists$ valid circulation. Easy to recover.

Circulations with demands and lower bounds

- 1. circulation and demands + for each edge a lower bound on flow.
- 2. $\forall e \in E(G): \ell(e) \leq c(e).$
- 3. Compute f such that $\forall e \ \ell(e) \leq f(e) \leq c(e)$.
- 4. Be stupid! Consider flow: $\forall e \ f_0(e) = \ell(e)$.
- 5. f_0 violates conservation of flow!

$L_{v} = f_{0}^{in}(v) - f_{0}^{out}(v) = \sum_{e \text{ into } v} \ell(e) - \sum_{e \text{ out of } v} \ell(e).$

- 6. If $L_{\nu} = d_{\nu}$, then no problem.
- 7. Fix-up demand: $\forall v \quad d'_v = d_v L_v$. Fix-up capacity: $c'(e) = c(e) - \ell(e)$.
- 8. **G'**: new network w. new demands/capacities (no lower bounds!)
- 9. Compute circulation f' on G'.
 - \implies The flow $f = f_0 + f'$, is a legal circulation,

Part III

Applications

Circulations with demands and lower bounds

Lemma

 $\exists \textit{ feasible circulation in } G \iff \textit{ there is a feasible circulation in } G'.$

Integrality: If all numbers are integers $\implies \exists$ integral feasible circulation.

Proof.

Let f' be a circulation in G'. Let $f(e) = f_0(e) + f'(e)$. Clearly, f satisfies the capacity condition in G, and the lower bounds. $f^{in}(v) - f^{out}(v) = \sum_{e \text{ into } v} (\ell(e) + f'(e)) - \sum_{e \text{ out of } v} (\ell(e) + f'(e)) = L_v + (d_v - L_v) = d_v.$ f: valid circulation in G. Then $f'(e) = f(e) - \ell(e)$ is a valid circulation for G'.

Survey design

- 1. Ask "Consumer i: what did you think of product j?"
- 2. *i*th consumer willing to answer between c_i to c'_i questions.
- 3. For each product **j**: at least p_j opinions, no more than p'_j opinions.
- 4. Full knowledge which consumers can be asked on which products.
- 5. Problem: How to assign questions to consumers?

Result...

Lemma

Given **n** consumers and **u** products with their constraints $c_1, c'_1, c_2, c'_2, \ldots, c_n, c'_n, p_1, p'_1, \ldots, p_u, p'_u$ and a list of length **m** of which products where used by which consumers. An algorithm can compute a valid survey under these constraints, if such a survey exists, in time $O((n + u)m^2)$.

