

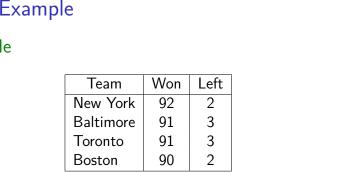
Pennant Race: Example

Example

Team	Won	Left
New York	92	2
Baltimore	91	3
Toronto	91	3
Boston	89	2

Can Boston win the pennant? No, because Boston can win at most 91 games.

<section-header>



Can Boston win the pennant? Not clear unless we know what the remaining games are!

Another Example

GIANTS 2

Example

Refining the Example

Example

Team	Won	Left	NY	Bal	Tor	Bos
New York	92	2	_	1	1	0
Baltimore	91	3	1	—	1	1
Toronto	91	3	1	1	—	1
Boston	90	2	0	1	1	—

Can Boston win the pennant? Suppose Boston does

- 1. Boston wins both its games to get 92 wins
- 2. New York must lose both games; now both Baltimore and Toronto have at least 92
- 3. Winner of Baltimore-Toronto game has 93 wins!

Abstracting the Problem

Given

- 1. A set of teams **S**
- 2. For each $x \in S$, the current number of wins w_x
- 3. For any $x, y \in S$, the number of remaining games g_{xy} between x and y
- 4. A team *z*
- Can \boldsymbol{z} win the pennant?

Towards a Reduction

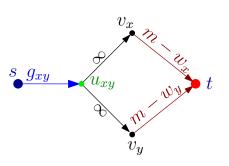
\overline{z} can win the pennant if

- 1. \overline{z} wins at least m games
 - 1.1 to maximize \overline{z} 's chances we make \overline{z} win all its remaining games and hence $m = w_{\overline{z}} + \sum_{x \in S} g_{x\overline{z}}$
- 2. no other team wins more than \boldsymbol{m} games
 - 2.1 for each $x, y \in S$ the g_{xy} games between them have to be *assigned* to either x or y.
 - 2.2 each team $x \neq \overline{z}$ can win at most $m w_x g_{x\overline{z}}$ remaining games

Is there an assignment of remaining games to teams such that no team $x \neq \overline{z}$ wins more than $m - w_x$ games?

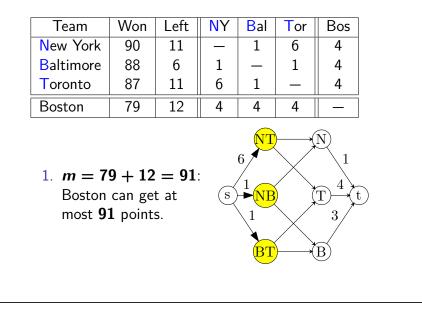
Flow Network: The basic gadget

- 1. *s*: source
- 2. *t*: sink
- 3. x, y: two teams
- *g_{xy}*: number of games remaining between *x* and *y*.
- *w_x*: number of points
 x has.
- *m*: maximum number of points *x* can win before team of interest is eliminated.



Flow Network: An Example

Can Boston win?



Correctness of reduction

Theorem

G' has a maximum flow of value $\mathbf{g}^* = \sum_{x,y \in S'} \mathbf{g}_{xy}$ if and only if $\overline{\mathbf{z}}$ can win the most number of games (including possibly tie with other teams).

Constructing Flow Network

Notations

Z.

1. **S**: set of teams.

2. w_x wins for each

team. and

3. g_{xy} games left

between **x** and **y**.

4. *m* be the maximum

5. and $S' = S \setminus \{\overline{z}\}$.

number of wins for

Reduction

Construct the flow network \boldsymbol{G} as follows

- 1. One vertex v_x for each team $x \in S'$, one vertex u_{xy} for each pair of teams x and y in S'
- 2. A new source vertex *s* and sink *t*
- 3. Edges (u_{xy}, v_x) and (u_{xy}, v_y) of capacity ∞
- Edges (s, u_{xy}) of capacity
 g_{xy}
- 5. Edges (v_x, t) of capacity equal $m w_x$

Proof of Correctness

Proof.

Existence of g^* flow $\Rightarrow \overline{z}$ can win pennant

- An integral flow saturating edges out of *s*, ensures that each remaining game between *x* and *y* is added to win total of either *x* or *y*
- 2. Capacity on (v_x, t) edges ensures that no team wins more than m games

Conversely, $\overline{\mathbf{z}}$ can win pennant \Rightarrow flow of value g^*

1. Scenario determines flow on edges; if x wins k of the games against y, then flow on (u_{xy}, v_x) edge is k and on (u_{xy}, v_y) edge is $g_{xy} - k$

Theorem

Theorem

Suppose that team **z** has been eliminated. Then there exists a "proof" of this fact of the following form:

The team z can finish with at most m wins.

There is a set of teams $\hat{\boldsymbol{S}} \subset \boldsymbol{S}$ so that

$$\sum_{s\in\widehat{S}}w_{x}+\sum_{\{x,y\}\subseteq\widehat{S}}g_{xy}>m\left|\widehat{S}\right|$$

(And hence one of the teams in \hat{S} must end with strictly more than m wins.)

Helper claim

Claim

For any two teams x and y for which the vertex u_{xy} exists, we have that $u_{xy} \in S$ if and only if both x and y are in \hat{S} .

Proof...

 $(x \notin \widehat{S} \text{ or } y \notin \widehat{S}) \implies u_{xy} \notin S$

If x is not in \hat{S} then v_x is in T. But then, if u_{xy} is in S the edge $(u_{xy} \rightarrow v_x)$ is in the cut. However, this edge has infinite capacity, which implies that (S, T) is not a minimum cut.

Certificate that \boldsymbol{z} cannot win

If z cannot win, then maxflow has value less than g^* . By max-flow-min-cut theorem, there is a cut (S, T) of capacity $\alpha < g^*$. Let \hat{S} be the set of teams x such that $v_x \in \hat{S}$.

Helper claim proof continued Proof. g_{xy} g_{yy} y_{y} $x \in \hat{S}$ and $y \in \hat{S} \implies u_{xy} \in S$ Assume x and y are in \hat{S} , then v_x and v_y are in S. If $u_{xy} \in T$ then consider the new cut formed by moving u_{xy} to S. For the new cut (S', T') we have $c(S', T') = c(S, T) - c((s \to u_{xy}))$.

Proof

There are two type of edges in the cut (S, T): (i) $(v_x \rightarrow t)$, for $x \in \hat{S}$, and (ii) $(s \rightarrow u_{xy})$ where at least one of x or y is not in \hat{S} . As such, the capacity of the cut (S, T) is

$$c(S, T) = \sum_{x \in \widehat{S}} (m - w_x) + \sum_{\{x, y\} \not \subset \widehat{S}} g_{xy}$$
$$= m \left| \widehat{S} \right| - \sum_{x \in \widehat{S}} w_x + \left(g^* - \sum_{\{x, y\} \subseteq \widehat{S}} g_{xy} \right)$$

However, $c(S, T) < g^*$, and it follows that

$$m\left|\widehat{S}\right| - \sum_{x\in\widehat{S}} w_x - \sum_{\{x,y\}\subseteq\widehat{S}} g_{xy} \ll 0.$$

1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	

