
Load Balancing

Problem
Input: m identical machines, n jobs with ith job having processing
time ti
Goal: Schedule jobs to computers such that

I Jobs run contiguously on a machine

I A machine processes only one job a time

I Makespan or maximum load on any machine is minimized

Definition
Let A(i) be the set of jobs assigned to machine i . The load on i is
Ti =

∑
j∈A(i) tj .

The makespan of A is T = maxi Ti

Load Balancing: Example

Example

Consider 6 jobs whose processing times is given as follows

Jobs 1 2 3 4 5 6

ti 2 3 4 6 2 2

Consider the following schedule on 3 machines

1 4

2 5

3 6

The loads are: T1 = 8, T2 = 5, and T3 = 6. So makespan of
schedule is 8

Load Balancing is NP-Complete

Decision version: given n,m and t1, t2, . . . , tn and a target T , is
there a schedule with makespan at most T ?

Problem is NP-Complete: reduce from Subset Sum.

Greedy Algorithm

1. Consider the jobs in some fixed order

2. Assign job j to the machine with lowest load so far

Example

Jobs 1 2 3 4 5 6

ti 2 3 4 6 2 2

1 4

2 5

3 6



Putting it together

for each machine i
Ti = 0 (* initially no load *)

A(i) = ∅ (* initially no jobs *)

for each job j
Let i be machine with smallest load

A(i) = A(i) ∪ {j} (* schedule j on i *)

Ti = Ti + tj (* compute new load *)

Running Time

I First loop takes O(m) time

I Second loop has O(n) iterations

I Body of loop takes O(log m) time using a priority heap

I Total time is O(n log m + m)

Optimality

Problem
Is the greedy algorithm optimal? No! For example, on

Jobs 1 2 3 4 5 6

ti 2 3 4 6 2 2

the greedy algorithm gives schedule with makespan 8, but optimal
is 7
In fact, the load balancing problem is NP-complete.

Quality of Solution

Theorem (Graham 1966)

The makespan of the schedule output by the greedy algorithm is at
most 2 times the optimal make span. In other words, the greedy
algorithm is a 2-approximation.

Challenge

How do we compare the output of the greedy algorithm with the
optimal? How do we get the value of the optimal solution?

I We will obtain bounds on the optimal value

Bounding the Optimal Value

Lemma
T ∗ ≥ maxj tj , where T ∗ is the optimal makespan

Proof.
Some machine will run the job with maximum processing time

Lemma
T ∗ ≥ 1

m

∑
j tj , where T ∗ is the optimal makespan

Proof.

I Total processing time is
∑

j tj

I Some machine must do at least 1
m (or average) of the total

work



Analysis of Greedy Algorithm

Theorem
The greedy algorithm is a 2-approximation

Proof.
Let machine i have the maximum load Ti , and let j be the last job
scheduled on machine i

I At the time j was scheduled, machine i must have had the
least load; load on i before assigning job j is Ti − tj

I Since i has the least load, we know Ti − tj ≤ Tk , for all k.
Thus, m(Ti − tj) ≤

∑
k Tk

I But
∑

k Tk =
∑

` t`. So Ti − tj ≤ 1
m

∑
k Tk = 1

m

∑
` t` ≤ T ∗

I Finally, Ti = (Ti − tj) + tj ≤ T ∗ + T ∗ = 2T ∗

Tightness of Analysis

Proposition

The analysis of the greedy algorithm is tight, i.e., there is an
example on which the greedy schedule has twice the optimal
makespan

Proof.
Consider problem of m(m − 1) jobs with processing time 1 and the
last job with processing time m.
Greedy schedule: distribute first the m(m − 1) jobs equally among
the m machines, and then schedule the last job on machine 1,
giving a makespan of (m − 1) + m = 2m − 1
The optimal schedule: run last job on machine 1, and then
distribute remaining jobs equally among m − 1 machines, giving a
makespan of m

Improved Greedy Algorithm

Modified Greedy

Sort the jobs in descending order of processing time, and process
jobs using greedy algorithm

for each machine i
Ti = 0 (* initially no load *)

A(i) = ∅ (* initially no jobs *)

for each job j in descending order of processing time

Let i be machine with smallest load

A(i) = A(i) ∪ {j} (* schedule j on i *)

Ti = Ti + tj (* compute new load *)

Technical Lemma

Lemma
If there are more than m jobs then T ∗ ≥ 2tm+1

Proof.
Consider the first m + 1 jobs

I Two of them must be scheduled on same machine, by
pigeon-hole principle

I Both jobs have processing time at least tm+1, since we
consider jobs according to processing time, and this proves the
lemma



Analysis of Modified Greedy

Theorem
The modified greedy algorithm is a 3/2-approximation

Proof.
Once again let i be the machine with highest load, and let j be the
last job scheduled

I If machine i has only one job then schedule is optimal

I If i has at least 2 jobs, then it must be the case that
j ≥ m + 1. This means tj ≤ tm+1 ≤ 1

2T ∗

I Thus, Ti = (Ti − tj) + tj ≤ T ∗ + 1
2T ∗

Tightness of Analysis

Theorem (Graham)

Modified greedy is a 4/3-approximation

The 4/3-analysis is tight.

(Weighted) Set Cover Problem

Input Given a set U of n elements, a collection
S1,S2, . . .Sm of subsets of U, with weights wi

Goal Find a collection C of these sets Si whose union is
equal to U and such that

∑
i∈C wi is minimized.

Example

Let U = {1, 2, 3, 4, 5, 6, 7, 8}, with

S1 = {1} w1 = 1 S2 = {2} w2 = 1
S3 = {3, 4} w3 = 1 S4 = {5, 6, 7, 8} w4 = 1
S5 = {1, 3, 5, 7} w5 = 1 + ε S6 = {2, 4, 6, 8} w6 = 1 + ε

{S5,S6} is a set cover of weight 2 + 2ε

Greedy Rule

I Pick the next set in the cover to be the one that makes “most
progress” towards the goal

I Covers many (uncovered) elements
I Has a small weight

I If R is the set of elements that aren’t covered as yet, add set
Si to the cover, if it minimizes the quantity wi

|Si∩R|



Greedy Algorithm

Initially R = U and C = ∅
while R 6= ∅

let Si be the set that minimizes wi/|Si ∩ R|
C = C ∪ {i}
R = R \ Si

return C

Running Time

I Main loop iterates for O(n) time, where |U| = n

I Minimum Si can be found in O(log m) time, using a priority
heap, where there are m sets in set cover instance

I Total time is O(n log m)

Example: Greedy Algorithm

1 1

1

1

1 + ε 1 + ε

Example

Let U = {1, 2, 3, 4, 5, 6, 7, 8}, with

S1 = {1} S2 = {2}
S3 = {3, 4} S4 = {5, 6, 7, 8}
S5 = {1, 3, 5, 7} S6 = {2, 4, 6, 8}

w1 = w2 = w3 = w4 = 1 and w5 = w6 = 1 + ε
Greedy Algorithm first picks S4, then S3, and
finally S1 and S2

Cost for covering an element

Definition

I Suppose the greedy algorithm selects sets S1,S2, . . .Sk (in
that order) to form the set cover.

I Consider an element s that is first covered when S i is picked

I Let R be the set of elements that are uncovered when S i is
picked

I The cost of covering s is cs = w(S i )/|S i ∩ R|, where w(S i ) is
weight of the set S i

Cost of element: Example

Example

Let U = {1, 2, 3, 4, 5, 6, 7, 8}, with

S1 = {1} S2 = {2}
S3 = {3, 4} S4 = {5, 6, 7, 8}
S5 = {1, 3, 5, 7} S6 = {2, 4, 6, 8}

w1 = w2 = w3 = w4 = 1 and w5 = w6 = 1 + ε. The greedy
algorithm picks S4,S3,S2, S1 in that order. The costs of elements
are given as follows

c1 = 1 c2 = 1 c3 = 1/2 c4 = 1/2
c5 = 1/4 c6 = 1/4 c7 = 1/4 c8 = 1/4



Costs of Covers and Elements

Proposition

If C is the set cover computed by the greedy algorithm then∑
i∈C wi =

∑
s∈U cs

Proof left as exercise

Main Idea
Upper bound the ratio

∑
s∈Sk cs

wk
, i.e., to say “to cover a lot of cost,

you need to use a lot of weight”

Bounding costs of sets

Lemma
For every set Sk ,

∑
s∈Sk cs ≤ H(|Sk |) · wk , where

H(n) =
∑n

i=1
1
i = Θ(ln n)

Proof.
Let Sk = {s1, . . . sd}, where si is covered before sj if i ≤ j

I Consider the iteration when sj is covered; at this time
R ⊇ {sj , sj+1, . . . sd}

I Average progress cost of Sk is wk/|Sk ∩ R| ≤ wk/(d − j + 1)

I Suppose sj gets covered because Si is selected by greedy
algorithm. Then, csj = wi

|Si∩R| ≤
wk
|Sk∩R| ≤

wk
d−j+1

I Hence,
∑

s∈Sk cs =
∑d

j=1 csj ≤
∑d

j=1
wi

d−j+1 = H(d)wk

Analysis of the Greedy Algorithm

Theorem
The greedy algorithm for set cover is a H(d∗)-approximation,
where d∗ = maxi |Si |

Proof.
Let C∗ be the optimal set cover, and C the set cover computed by
greedy algorithm

I By previous lemma we know wi ≥ 1
H(d∗)

∑
s∈Si csi and so we

have w∗ =
∑

i∈C∗ wi ≥
∑

i∈C∗
1

H(d∗)

∑
s∈Si csi

I Further,
∑

i∈C∗
∑

s∈Si cs ≥
∑

s∈U cs

I Thus, w∗ =
∑

i∈C∗ wi ≥
∑

i∈C∗
1

H(d∗)

∑
s∈Si csi ≥

1
H(d∗)

∑
s∈U cs = 1

H(d∗)

∑
i∈C wi

Tightness of Analysis

Analysis Tight?

Does the Greedy Algorithm give better approximation guarantees?
No!
Consider a generalization of the set cover example. Each column
has 2k−1 elements, and there are two sets consisting of a column
each with weight 1 + ε. Additionally there are log n sets of
increasing size of weight 1. The greedy algorithm will pick these
log n sets given weight log n, while the best cover has weight 2 + 2ε



Best Algorithm for Set Cover

Theorem
If P 6= NP then no polynomial time algorithm can achieve a better
than H(n) approximation.

Proof beyond the scope of this course.


