
Algorithms Lecture 30: NP-Hard Problems [Fa’14]

A graph with maximum clique size 4.

graph G
O(n)
−−−→ complement graph G

w

w

� MaxClique

largest independent set
trivial
←−−− largest clique

30.9 Vertex Cover (from Independent Set)

A vertex cover of a graph is a set of vertices that touches every edge in the graph. The
MinVertexCover problem is to find the smallest vertex cover in a given graph.

Again, the proof of NP-hardness is simple, and relies on just one fact: If I is an independent
set in a graph G = (V, E), then V \ I is a vertex cover. Thus, to find the largest independent set,
we just need to find the vertices that aren’t in the smallest vertex cover of the same graph.

graph G = (V, E)
trivial
−−−→ graph G = (V, E)

w

w

� MinVertexCover

largest independent set V \ S
O(n)
←−−− smallest vertex cover S

30.10 Graph Coloring (from 3SAT)

A k-coloring of a graph is a map C : V → {1,2, . . . , k} that assigns one of k ‘colors’ to each vertex,
so that every edge has two different colors at its endpoints. The graph coloring problem is to find
the smallest possible number of colors in a legal coloring. To show that this problem is NP-hard,
it’s enough to consider the special case 3Colorable: Given a graph, does it have a 3-coloring?

To prove that 3Colorable is NP-hard, we use a reduction from 3SAT. Given a 3CNF formula
Φ, we produce a graph GΦ as follows. The graph consists of a truth gadget, one variable gadget
for each variable in the formula, and one clause gadget for each clause in the formula.

• The truth gadget is just a triangle with three vertices T , F , and X , which intuitively stand
for True, False, and Other. Since these vertices are all connected, they must have
different colors in any 3-coloring. For the sake of convenience, we will name those colors
True, False, and Other. Thus, when we say that a node is colored True, all we mean is
that it must be colored the same as the node T .

• The variable gadget for a variable a is also a triangle joining two new nodes labeled a and
a to node X in the truth gadget. Node a must be colored either True or False, and so
node a must be colored either False or True, respectively.

• Finally, each clause gadget joins three literal nodes to node T in the truth gadget using five
new unlabeled nodes and ten edges; see the figure below. A straightforward case analysis

10



Algorithms Lecture 30: NP-Hard Problems [Fa’14]

X

T F

X

a a

The truth gadget and a variable gadget for a.

implies that if all three literal nodes in the clause gadget are colored False, then some edge
in the gadget must be monochromatic. Since the variable gadgets force each literal node to
be colored either True or False, in any valid 3-coloring, at least one of the three literal
nodes is colored True. On the other hand, for any coloring of the literal nodes where at
least one literal node is colored True, there is a valid 3-coloring of the clause gadget.

a

b

c

T

A clause gadget for (a ∨ b ∨ c̄).

The final graph GΦ contains exactly one node T , exactly one node F , and exactly two nodes a
and ā for each variable. For example, the formula (a∨ b∨ c)∧ (b∨ c̄∨ d̄)∧ (ā∨ c∨d)∧ (a∨ b̄∨ d̄)
that I used to illustrate the MaxClique reduction would be transformed into the graph shown
on the next page. The 3-coloring is one of several that correspond to the satisfying assignment
a = c = True, b = d = False.

X

T F

a a b b c c d d

A 3-colorable graph derived from the satisfiable 3CNF formula
(a ∨ b ∨ c)∧ (b ∨ c̄ ∨ d̄)∧ (ā ∨ c ∨ d)∧ (a ∨ b̄ ∨ d̄)

Now the proof of correctness is just brute force case analysis. If the graph is 3-colorable, then
we can extract a satisfying assignment from any 3-coloring—at least one of the three literal nodes
in every clause gadget is colored True. Conversely, if the formula is satisfiable, then we can color
the graph according to any satisfying assignment.

11



Algorithms Lecture 30: NP-Hard Problems [Fa’14]

3CNF formula
O(n)
−−−→ graph

w

w

� 3Colorable

True or False
trivial
←−−− True or False

We can easily verify that a graph has been correctly 3-colored in linear time: just compare the
endpoints of every edge. Thus, 3Coloring is in NP, and therefore NP-complete. Moreover, since
3Coloring is a special case of the more general graph coloring problem—What is the minimum
number of colors?—the more problem is also NP-hard, but not NP-complete, because it’s not a
decision problem.

30.11 Hamiltonian Cycle (from Vertex Cover)

A Hamiltonian cycle in a graph is a cycle that visits every vertex exactly once. This is very
different from an Eulerian cycle, which is actually a closed walk that traverses every edge exactly
once. Eulerian cycles are easy to find and construct in linear time using a variant of depth-first
search.

To prove that finding a Hamiltonian cycle in a directed graph is NP-hard, we describe a
reduction from the vertex cover problem. Given an undirected graph G and an integer k, we
need to transform it into another graph H, such that H has a Hamiltonian cycle if and only if G
has a vertex cover of size k. As usual, our transformation uses several gadgets.

• For each undirected edge uv in G, the directed graph H contains an edge gadget consisting
of four vertices (u, v, in), (u, v,out), (v, u, in), (v, u,out) and six directed edges

(u, v, in)�(u, v,out) (u, v, in)�(v, u, in) (v, u, in)�(u, v, in)

(v, u, in)�(v, u,out) (u, v,out)�(v, u,out) (v, u,out)�(u, v,out)

as shown on the next page. Each “in” vertex has an additional incoming edge, and each
“out” vertex has an additional outgoing edge. A Hamiltonian cycle must pass through an
edge gadget in one of three ways—either straight through on both sides, or with a detour
from one side to the other and back. Eventually, these options will correspond to both u
and v, only u, or only v belonging to some vertex cover.

u v
(u,v,in)

(u,v,out)

(v,u,in)

(v,u,out)

An edge gadget for uv and its only possible intersections with a Hamiltonian cycle.

• For each vertex u in G, all the edge gadgets for incident edges uv are connected in H into
a single directed path, which we call a vertex chain. Specifically, suppose vertex u has
d neighbors v1, v2, . . . , vd . Then H has d − 1 additional edges (u, vi ,out)�(u, vi+1, in) for
each i.

12



Algorithms Lecture 30: NP-Hard Problems [Fa’14]

• Finally, H also contains k cover vertices, simply numbered 1 through k. Each cover vertex
has a directed edge to the first vertex in each vertex chain, and a directed edge from the
last vertex in each vertex chain.

An example of our complete transformation is shown below.

u v

w x

u v

w x

The original graph G and the transformed graph H, where k = 2.

Now suppose C = {u1, u2, . . . , uk} is a vertex cover of G. Then H contains a Hamiltonian
cycle, constructed as follows. Start at cover vertex 1, through traverse the vertex chain for vu1,
then visit cover vertex 2, then traverse the vertex chain for vu2, and so forth, eventually returning
to cover vertex 1. As we traverse the vertex chain for any vertex ui , we have a choice for how to
proceed when we reach any node (ui , v, in).

• If v ∈ C , follow the edge (ui , v, in)�(ui , v,out).

• If v 6∈ C , detour through the path (ui , v, in)�(v, ui , in)�(v, ui ,out)�(ui , v,out).

Thus, for each edge uv of G, the Hamiltonian cycle visits (u, v, in) and (u, v,out) as part of u’s
vertex chain if u ∈ C and as part of v’s vertex chain otherwise.

u v

w x

u v

w x

A vertex cover {u, x} in G and the corresponding Hamiltonian cycle in H.

13



Algorithms Lecture 30: NP-Hard Problems [Fa’14]

Now suppose H contains a Hamiltonian cycle C . This cycle must contain an edge from each
cover vertex to the start of some vertex chain. Our case analysis of edge gadgets inductively
implies that after C enters the vertex chain for some vertex u, it must traverse the entire
vertex chain. Specifically, at each vertex (u, v, in), the cycle must contain either the single edge
(u, v, in)�(u, v,out) or the detour path (u, v, in)�(v, u, in)�(v, u,out)�(u, v,out), followed by an
edge to the next edge gadget in u’s vertex chain, or to a cover vertex if this is the last such edge
gadget. In particular, if C contains the detour edge (u, v, in)�(v, u, in), it does not contain edges
between any cover vertex and v’s vertex chain. It follows that C traverses exactly k vertex chains.
Moreover, these vertex chains describe a vertex cover of the original graph G, because C visits
the vertex (u, v, in) for every edge uv in G.

We conclude that G contains a vertex cover of size k if and only if H contains a Hamiltonian
cycle.

The transformation from G to H takes at most O(n2) time; we conclude that the Hamiltonian
cycle problem is NP-hard. Moreover, since we can easily verify a Hamiltonian cycle in linear time,
the Hamiltonian cycle problem is in NP, and therefore is NP-complete.

undirected graph G, integer k
O(n2)
−−−→ directed graph H

w

w

� HamCycle

True or False
trivial
←−−− True or False

A closely related problem to Hamiltonian cycles is the famous traveling salesman problem—
Given a weighted graph G, find the shortest cycle that visits every vertex. Finding the shortest
cycle is obviously harder than determining if a cycle exists at all, so the traveling salesman
problem is also NP-hard.

Finally, we can prove prove that finding Hamiltonian cycles in undirected graphs is NP-hard
using a simple reduction from the same problem in directed graphs. I’ll leave the details of this
reduction as an entertaining exercise.

30.12 Subset Sum (from Vertex Cover)

The next problem that we prove NP-hard is the SubsetSum problem considered in the very first
lecture on recursion: Given a set X of positive integers and an integer t, determine whether X
has a subset whose elements sum to t.

To prove this problem is NP-hard, we once again reduce from VertexCover. Given a graph
G and an integer k, we compute a set X of integer and an integer t, such that X has a subset
that sums to t if and only if G has an vertex cover of size k. Our transformation uses just two
‘gadgets’, which are integers representing vertices and edges in G.

Number the edges of G arbitrarily from 0 to m−1. Our set X contains the integer bi := 4i for
each edge i, and the integer

av := 4m +
∑

i∈∆(v)

4i

for each vertex v, where ∆(v) is the set of edges that have v has an endpoint. Alternately, we
can think of each integer in X as an (m+ 1)-digit number written in base 4. The mth digit is 1
if the integer represents a vertex, and 0 otherwise; and for each i < m, the ith digit is 1 if the

14



Algorithms Lecture 30: NP-Hard Problems [Fa’14]

integer represents edge i or one of its endpoints, and 0 otherwise. Finally, we set the target sum

t := k · 4m +
m−1
∑

i=0

2 · 4i .

Now let’s prove that the reduction is correct. First, suppose there is a vertex cover of size k
in the original graph G. Consider the subset XC ⊆ X that includes av for every vertex v in the
vertex cover, and bi for every edge i that has exactly one vertex in the cover. The sum of these
integers, written in base 4, has a 2 in each of the first m digits; in the most significant digit, we
are summing exactly k 1’s. Thus, the sum of the elements of XC is exactly t.

On the other hand, suppose there is a subset X ′ ⊆ X that sums to t. Specifically, we must
have

∑

v∈V ′
av +

∑

i∈E′
bi = t

for some subsets V ′ ⊆ V and E′ ⊆ E. Again, if we sum these base-4 numbers, there are no carries
in the first m digits, because for each i there are only three numbers in X whose ith digit is 1.
Each edge number bi contributes only one 1 to the ith digit of the sum, but the ith digit of t is 2.
Thus, for each edge in G, at least one of its endpoints must be in V ′. In other words, V is a vertex
cover. On the other hand, only vertex numbers are larger than 4m, and bt/4mc= k, so V ′ has at
most k elements. (In fact, it’s not hard to see that V ′ has exactly k elements.)

For example, given the four-vertex graph used on the previous page to illustrate the reduction
to Hamiltonian cycle, our set X might contain the following base-4 integers:

au := 1110004 = 1344 buv := 0100004 = 256
av := 1101104 = 1300 buw := 0010004 = 64
aw := 1011014 = 1105 bvw := 0001004 = 16
ax := 1000114 = 1029 bvx := 0000104 = 4

bwx := 0000014 = 1

If we are looking for a vertex cover of size 2, our target sum would be t := 2222224 = 2730.
Indeed, the vertex cover {v, w} corresponds to the subset {av , aw, buv , buw, bvx , bwx}, whose sum
is 1300+ 1105+ 256+ 64+ 4+ 1= 2730.

The reduction can clearly be performed in polynomial time. Since VertexCover is NP-hard,
it follows that SubsetSum is NP-hard.

There is one subtle point that needs to be emphasized here. Way back at the beginning of the
semester, we developed a dynamic programming algorithm to solve SubsetSum in time O(nt).
Isn’t this a polynomial-time algorithm? idn’t we just prove that P=NP? Hey, where’s our million
dollars? Alas, life is not so simple. True, the running time is polynomial in n and t, but in order
to qualify as a true polynomial-time algorithm, the running time must be a polynomial function of
the size of the input. The values of the elements of X and the target sum t could be exponentially
larger than the number of input bits. Indeed, the reduction we just described produces a value of
t that is exponentially larger than the size of our original input graph, which would force our
dynamic programming algorithm to run in exponential time.

Algorithms like this are said to run in pseudo-polynomial time, and any NP-hard problem
with such an algorithm is called weakly NP-hard. Equivalently, a weakly NP-hard problem is
one that can be solved in polynomial time when all input numbers are represented in unary (as a
sum of 1s), but becomes NP-hard when all input numbers are represented in binary. If a problem
is NP-hard even when all the input numbers are represented in unary, we say that the problem is
strongly NP-hard.

15


