# Approximating the Permanent

Eric Vigoda Georgia Tech KAIST (Spring '15)

Guest lecture for KAIST CS 500 Graduate Algorithms Wednesday, March 11, 2015





### **3** RANDOM PERFECT MATCHING

# WHAT IS THE PERMANENT?

 $3 \times 3$  example:

$$A = \left[ \begin{array}{rrr} a & b & c \\ d & e & f \\ g & h & i \end{array} \right]$$

Determinant of A:

$$det(A) = (aei + bfg + cdh) - (ceg + bdi + afh).$$

Permanent of A:

$$per(A) = aei + bfg + cdh + ceg + bdi + afh.$$

# WHAT IS THE PERMANENT?

 $3\times3$  example:

$$A = \left[ \begin{array}{rrr} a & b & c \\ d & e & f \\ g & h & i \end{array} \right]$$

Determinant of A:

$$det(A) = (aei + bfg + cdh) - (ceg + bdi + afh).$$

Permanent of A:

$$per(A) = aei + bfg + cdh + ceg + bdi + afh.$$

In general, for a  $n \times n$  matrix A, the determinant of A is

$$\det(A) = \sum_{\pi} \operatorname{sgn}(\pi) \prod_{i} A(i, \pi(i)),$$

where  $\pi$  ranges over all permutations of  $\{1, \ldots, n\}$ .

The permanent of A is

$$\operatorname{per}(A) = \sum_{\pi} \prod_{i} A(i, \pi(i))$$

# WHAT IS THE SIGNIFICANCE OF THE PERMANENT?

$$per(A) = \sum_{\pi} \prod_{i} A(i, \pi(i))$$

What is its significance?

For 0-1 matrix, view A as adjacency matrix for bipartite graph.

### WHAT IS THE SIGNIFICANCE OF THE PERMANENT?

$$\operatorname{per}(A) = \sum_{\pi} \prod_{i} A(i, \pi(i))$$

What is its significance?

For 0 - 1 matrix, view A as adjacency matrix for bipartite graph.

Example: 
$$A = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$



per(A) = aei + bfg + cdh + ceg + bdi + afh

# WHAT IS THE SIGNIFICANCE OF THE PERMANENT?

$$per(A) = \sum_{\pi} \prod_{i} A(i, \pi(i))$$

What is its significance?

For 0 - 1 matrix, view A as adjacency matrix for bipartite graph.

Example: 
$$A = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

$$per(A) = aei + bfg + cdh + ceg + bdi + afh$$
$$= bfg + cdh + bdi = 3$$

Some applications of the Permanent:

- Statistical Physics:
  - Dimer model of adsorption of diatomic molecules,
  - Ice-type models of crystal lattices with hydrogen bonds,
- Computer Vision: Tracking objects
- Number of graphs with specified degree sequence

Given a graph G = (V, E) with n = |V| vertices,

let  $\mathcal{P} =$  perfect matchings of G.

Can we compute  $|\mathcal{P}|$  in time polynomial in *n*?

Given a graph G = (V, E) with n = |V| vertices,

let  $\mathcal{P} =$  perfect matchings of G.

Can we compute  $|\mathcal{P}|$  in time polynomial in *n*?

- Polynomial time algorithm for planar graphs [Kasteleyn '67]
- #P-complete for bipartite graphs [Valiant '79]
- FPRAS for counting *all* matchings [Jerrum-Sinclair '89]
- FPRAS for counting perfect matchings of bipartite [JSV '04] Fastest algorithm:  $O^*(n^7)$  time [BSVV '09]

Given a graph G = (V, E) with n = |V| vertices,

let  $\mathcal{P} =$  perfect matchings of G.

Can we compute  $|\mathcal{P}|$  in time polynomial in *n*?

- Polynomial time algorithm for planar graphs [Kasteleyn '67]
- #P-complete for bipartite graphs [Valiant '79]
- FPRAS for counting *all* matchings [Jerrum-Sinclair '89]
- FPRAS for counting perfect matchings of bipartite [JSV '04] Fastest algorithm:  $O^*(n^7)$  time [BSVV '09]

Main tasks:

- Count all matchings or generate a random matching.
- Count perfect matchings or generate a random perfect matching.





### **3** RANDOM PERFECT MATCHING

# RANDOM MATCHING

Undirected graph G = (V, E):



Matching = subset of vertex disjoint edges.

Let  $\Omega$  = collection of all matchings of *G* (of all sizes).

# RANDOM MATCHING

Undirected graph G = (V, E):



Matching = subset of vertex disjoint edges.

Let  $\Omega$  = collection of all matchings of *G* (of all sizes).

Can we generate a matching uniformly at random from  $\Omega$ ? in time polynomial in n = |V|?

# MARKOV CHAIN FOR MATCHINGS

Consider an undirected graph G = (V, E).

From a matching  $X_t$  the transition  $X_t \rightarrow X_{t+1}$  is defined as follows:

- Choose an edge e = (v, w) uniformly at random from *E*.
- $e Remove: If e \in X_t then set X_{t+1} = X_t \setminus \{e\}.$
- **3** Add: If v and w are unmatched in  $X_t$  then  $X_{t+1} = X_t \bigcup \{e\}$ .
- Otherwise, set  $X_{t+1} = X_t$ .

Symmetric and ergodic, hence:

unique stationary distribution  $\pi$  is uniform over  $\Omega$ .

# MARKOV CHAIN FOR MATCHINGS

Consider an undirected graph G = (V, E).

From a matching  $X_t$  the transition  $X_t \rightarrow X_{t+1}$  is defined as follows:

- Choose an edge e = (v, w) uniformly at random from E.
- $e Remove: If e \in X_t then set X_{t+1} = X_t \setminus \{e\}.$
- **3** Add: If v and w are unmatched in  $X_t$  then  $X_{t+1} = X_t \bigcup \{e\}$ .
- Otherwise, set  $X_{t+1} = X_t$ .

Symmetric and ergodic, hence:

unique stationary distribution  $\pi$  is uniform over  $\Omega$ .

Mixing time = How fast does it reach  $\pi$ ?

Consider an undirected graph G = (V, E).

From a matching  $X_t$  the transition  $X_t \rightarrow X_{t+1}$  is defined by:

- Choose an edge e = (v, w) uniformly at random from *E*.
- $e Remove: If e \in X_t then set X_{t+1} = X_t \setminus \{e\}.$
- Add: If v and w are unmatched in  $X_t$  then  $X_{t+1} = X_t \bigcup \{e\}$ .
- Slide: If v is unmatched and w is matched (or vice-versa):
  - Let (w, z) denote the matched edge.
  - $Set X_{t+1} = X_t \bigcup (v, w) \setminus (w, z).$
- Otherwise, set  $X_{t+1} = X_t$ .

How fast does an ergodic MC reach its unique stationary  $\pi$ ?

How fast does an ergodic MC reach its unique stationary  $\pi$ ?

Need to measure distance from  $\pi$ , use total variation distance. For distributions  $\mu$  and  $\nu$  on set  $\Omega$ :

$$\mathrm{d}_{\mathrm{TV}}(\mu,\nu) = \frac{1}{2} \sum_{x \in \Omega} |\mu(x) - \nu(x)|.$$

How fast does an ergodic MC reach its unique stationary  $\pi$ ?

Need to measure distance from  $\pi$ , use total variation distance. For distributions  $\mu$  and  $\nu$  on set  $\Omega$ :

$$\mathrm{d}_{\mathrm{TV}}(\mu, \nu) = rac{1}{2} \sum_{x \in \Omega} |\mu(x) - \nu(x)|.$$

*Example:*  $\Omega = \{1, 2, 3, 4\}.$   $\mu$  is uniform:  $\mu(1) = \mu(2) = \mu(3) = \mu(4) = .25.$ And  $\nu$  has:  $\nu(1) = .5, \nu(2) = .1, \nu(3) = .15, \nu(4) = .25.$ 

$$d_{\rm TV}(\mu,\nu) = \frac{1}{2}(.25 + .15 + .1 + 0) = .25$$

For state  $x \in \Omega$ , time to mix from x:

$$T(x) = \min\{t : \mathrm{d}_{\mathrm{TV}}(\mathrm{P}^t(x, \cdot), \pi) \le 1/4\}$$

For state  $x \in \Omega$ , time to mix from x:

$$T(x) = \min\{t : d_{\mathrm{TV}}(\mathrm{P}^t(x, \cdot), \pi) \le 1/4\}$$

Then, mixing time  $T_{mix} = \max_{x} T(x)$ . Summarizing in words:

mixing time is time to get within distance  $\leq 1/4$  of  $\pi$  from the worst initial state  $X_0$ .

For state  $x \in \Omega$ , time to mix from x:

$$T(x) = \min\{t : d_{\mathrm{TV}}(\mathrm{P}^t(x, \cdot), \pi) \le 1/4\}$$

Then, mixing time  $T_{mix} = \max_{x} T(x)$ . Summarizing in words:

mixing time is time to get within distance  $\leq 1/4$  of  $\pi$  from the worst initial state  $X_0$ .

Choice of constant 1/4 is somewhat arbitrary. Can "boost" to distance  $\leq \epsilon$  in time  $O(T_{mix} \log(1/\epsilon))$ .

For state  $x \in \Omega$ , time to mix from x:

$$T(x) = \min\{t : \mathrm{d}_{\mathrm{TV}}(\mathrm{P}^t(x, \cdot), \pi) \le 1/4\}$$

Then, mixing time  $T_{mix} = \max_{x} T(x)$ . Summarizing in words:

mixing time is time to get within distance  $\leq 1/4$  of  $\pi$  from the worst initial state  $X_0$ .

Choice of constant 1/4 is somewhat arbitrary. Can "boost" to distance  $\leq \epsilon$  in time  $O(T_{mix} \log(1/\epsilon))$ .

Rapidly mixing if  $T_{mix} = poly(n)$ .

Relaxation time  $T_{rel}$  = mixing time from a nice initial  $\mu_0$ .

Underlying directed graph  $H = (\Omega, E_P)$  of the Markov chain: Vertices = states  $\Omega$ Edges = { $M \rightarrow M' : M, M' \in \Omega, P(M, M') > 0$ }.

Underlying directed graph  $H = (\Omega, E_P)$  of the Markov chain: Vertices = states  $\Omega$ Edges =  $\{M \rightarrow M' : M, M' \in \Omega, P(M, M') > 0\}.$ 

For a set  $S \subset \Omega$  where  $\pi(S) \leq 1/2$  denote its conductance by:

$$\Phi(S) = \Pr\left(X_{t+1} \notin S \mid X_t \in S, X_t \sim \pi\right) = \sum_{M \in S, M' \in \overline{S}} \frac{\pi(M) \mathrm{P}(M, M')}{\pi(S)}$$

Let 
$$\Phi = \min_{S} \Phi(S)$$

Underlying directed graph  $H = (\Omega, E_P)$  of the Markov chain: Vertices = states  $\Omega$ Edges =  $\{M \to M' : M, M' \in \Omega, P(M, M') > 0\}.$ 

For a set  $S \subset \Omega$  where  $\pi(S) \leq 1/2$  denote its conductance by:

$$\Phi(S) = \Pr\left(X_{t+1} \notin S \mid X_t \in S, X_t \sim \pi\right) = \sum_{M \in S, M' \in \overline{S}} \frac{\pi(M) \mathrm{P}(M, M')}{\pi(S)}$$

For our chain since  $\pi$  is uniform simplifies to:

$$\Phi(S) = \frac{1}{m} \frac{\#\{\text{of edges from } S \text{ to } \overline{S}\}}{|S|}$$
  
Let  $\Phi = \min_{S} \Phi(S)$ 

Underlying directed graph  $H = (\Omega, E_P)$  of the Markov chain: Vertices = states  $\Omega$ Edges =  $\{M \to M' : M, M' \in \Omega, P(M, M') > 0\}.$ 

For a set  $S \subset \Omega$  where  $\pi(S) \leq 1/2$  denote its conductance by:

$$\Phi(S) = \Pr\left(X_{t+1} \notin S \mid X_t \in S, X_t \sim \pi\right) = \sum_{M \in S, M' \in \overline{S}} \frac{\pi(M) \mathrm{P}(M, M')}{\pi(S)}$$

For our chain since  $\pi$  is uniform simplifies to:

$$\Phi(S) = \frac{1}{m} \frac{\#\{\text{of edges from } S \text{ to } \overline{S}\}}{|S|}$$
Let  $\Phi = \min_{S} \Phi(S)$ 

$$\Omega(1/\Phi) = \mathrm{T}_{\mathrm{rel}} = \mathcal{O}(1/\Phi^2).$$

For every pair  $I, F \in \Omega$  define a path  $\gamma_{I,F}$  along edges of H.

For every pair  $I, F \in \Omega$  define a path  $\gamma_{I,F}$  along edges of H. For edge  $T = M \rightarrow M' \in E_P$ , define its *congestion*:

$$cp(T) = \{(I, F) : T \in \gamma_{I, F}\}$$
  
Let  $\rho = \max_{T \in E_{P}} \frac{|cp(T)|}{|\Omega|}$   
 $\Phi \ge \frac{1}{2m\rho}$ 

For every pair  $I, F \in \Omega$  define a path  $\gamma_{I,F}$  along edges of H. For edge  $T = M \rightarrow M' \in E_P$ , define its *congestion*:

$$cp(T) = \{(I, F) : T \in \gamma_{I, F}\}$$
  
Let  $\rho = \max_{T \in E_{P}} \frac{|cp(T)|}{|\Omega|}$   
 $\Phi \ge \frac{1}{2m\rho}$ 

Corollary: 
$$\mathrm{T_{rel}}=O((m
ho)^2).$$

For every pair  $I, F \in \Omega$  define a path  $\gamma_{I,F}$  along edges of H. For edge  $T = M \rightarrow M' \in E_P$ , define its *congestion*:

$$cp(T) = \{(I, F) : T \in \gamma_{I, F}\}$$
  
Let  $\rho = \max_{T \in E_{P}} \frac{|cp(T)|}{|\Omega|}$   
 $\Phi \ge \frac{1}{2m\rho}$ 

*Proof:* For  $S \subset \Omega$  where  $|S| \leq |\overline{S}|$ :

Corollary: 
$$T_{rel} = O((m\rho)^2)$$
.

For every pair  $I, F \in \Omega$  define a path  $\gamma_{I,F}$  along edges of H. For edge  $T = M \rightarrow M' \in E_P$ , define its *congestion*:

$$cp(T) = \{(I, F) : T \in \gamma_{I, F}\}$$
  
Let  $\rho = \max_{T \in E_{P}} \frac{|cp(T)|}{|\Omega|}$ 
$$\Phi \ge \frac{1}{2m\rho}$$

*Proof:* For  $S \subset \Omega$  where  $|S| \leq |\overline{S}|$ :  $|S| \times |\overline{S}| \ (I, F)$  pairs where  $I \in S$  and  $F \in \overline{S}$ .

Corollary: 
$$T_{rel} = O((m\rho)^2)$$
.

For every pair  $I, F \in \Omega$  define a path  $\gamma_{I,F}$  along edges of H. For edge  $T = M \rightarrow M' \in E_P$ , define its *congestion*:

$$\operatorname{cp}(T) = \{(I, F) : T \in \gamma_{I, F}\}$$
  
Let  $\rho = \max_{T \in E_{\mathrm{P}}} \frac{|\operatorname{cp}(T)|}{|\Omega|}$ 

$$\Phi \geq rac{1}{2m
ho}$$

$$\begin{array}{ll} \textit{Proof:} & \text{For } S \subset \Omega \text{ where } |S| \leq |\overline{S}|: \\ & |S| \times |\overline{S}| \; (I,F) \text{ pairs where } I \in S \text{ and } F \in \overline{S}. \\ & \text{Each } T \in E_{\mathrm{P}} \text{ has at most } \rho |\Omega| \text{ paths thru it.} \end{array}$$

Corollary: 
$$\mathrm{T_{rel}}=O((m
ho)^2).$$

For every pair  $I, F \in \Omega$  define a path  $\gamma_{I,F}$  along edges of H. For edge  $T = M \rightarrow M' \in E_P$ , define its *congestion*:

$$\operatorname{cp}(T) = \{(I, F) : T \in \gamma_{I, F}\}$$

Let 
$$\rho = \max_{T \in E_{\mathrm{P}}} \frac{|\mathrm{cp}(T)|}{|\Omega|}$$
  
 $\Phi \ge \frac{1}{2m\rho}$ 

$$\begin{array}{ll} \textit{Proof:} & \text{For } S \subset \Omega \text{ where } |S| \leq |\overline{S}| \text{:} \\ & |S| \times |\overline{S}| \ (I,F) \text{ pairs where } I \in S \text{ and } F \in \overline{S}. \\ & \text{Each } T \in E_{\mathrm{P}} \text{ has at most } \rho |\Omega| \text{ paths thru it.} \\ & \text{Hence, } \geq \frac{|S||\overline{S}|}{\rho \Omega} \geq \frac{|S|}{2\rho} \text{ transitions from } S \text{ to } \overline{S}. \end{array}$$

Corollary: 
$$T_{rel} = O((m\rho)^2)$$
.
Consider an undirected graph G = (V, E).

From a matching  $X_t$  the transition  $X_t \rightarrow X_{t+1}$  is defined by:

- Choose an edge e = (v, w) uniformly at random from E.
- **2** *Remove:* If  $e \in X_t$  then set  $X_{t+1} = X_t \setminus \{e\}$ .
- Add: If v and w are unmatched in  $X_t$  then  $X_{t+1} = X_t \bigcup \{e\}$ .
- Slide: If v is unmatched and w is matched (or vice-versa):
  - Let (w, z) denote the matched edge.
- Otherwise, set  $X_{t+1} = X_t$ .

Consider a pair of matchings I and F.

Consider a pair of matchings I and F.

Look at their difference:  $I \oplus F$ .

Consists of alternating/augmenting paths and alternating cycles:



Consider a pair of matchings I and F.

Look at their difference:  $I \oplus F$ .

Consists of alternating/augmenting paths and alternating cycles:



- Order components of  $I \oplus F$  by smallest vertex in each.
- Unwind" components in order.

Consider a pair of matchings I and F.

Look at their difference:  $I \oplus F$ .

Consists of alternating/augmenting paths and alternating cycles:



- Order components of  $I \oplus F$  by smallest vertex in each.
- Unwind" components in order.

Consider a pair of matchings I and F.

Look at their difference:  $I \oplus F$ .

Consists of alternating/augmenting paths and alternating cycles:



- Order components of  $I \oplus F$  by smallest vertex in each.
- Unwind" components in order.

Consider a pair of matchings I and F.

Look at their difference:  $I \oplus F$ .

Consists of alternating/augmenting paths and alternating cycles:



- Order components of  $I \oplus F$  by smallest vertex in each.
- Unwind" components in order.

Consider a pair of matchings I and F.

Look at their difference:  $I \oplus F$ .

Consists of alternating/augmenting paths and alternating cycles:



- Order components of  $I \oplus F$  by smallest vertex in each.
- Unwind" components in order.

Consider a pair of matchings I and F.

Look at their difference:  $I \oplus F$ .

Consists of alternating/augmenting paths and alternating cycles:



- Order components of  $I \oplus F$  by smallest vertex in each.
- Unwind" components in order.

Consider a pair of matchings I and F.

Look at their difference:  $I \oplus F$ .

Consists of alternating/augmenting paths and alternating cycles:



- Order components of  $I \oplus F$  by smallest vertex in each.
- Unwind" components in order.

Consider a pair of matchings I and F.

Look at their difference:  $I \oplus F$ .

Consists of alternating/augmenting paths and alternating cycles:



- Order components of  $I \oplus F$  by smallest vertex in each.
- Unwind" components in order.

Consider a pair of matchings I and F.

Look at their difference:  $I \oplus F$ .

Consists of alternating/augmenting paths and alternating cycles:



- Order components of  $I \oplus F$  by smallest vertex in each.
- Unwind" components in order.

Consider a pair of matchings I and F.

Look at their difference:  $I \oplus F$ .

Consists of alternating/augmenting paths and alternating cycles:



- Order components of  $I \oplus F$  by smallest vertex in each.
- Unwind" components in order.

Consider a pair of matchings I and F.

Look at their difference:  $I \oplus F$ .

Consists of alternating/augmenting paths and alternating cycles:



- Order components of  $I \oplus F$  by smallest vertex in each.
- Unwind" components in order.

Consider a pair of matchings I and F.

Look at their difference:  $I \oplus F$ .

Consists of alternating/augmenting paths and alternating cycles:



- Order components of  $I \oplus F$  by smallest vertex in each.
- Unwind" components in order.

Consider a pair of matchings I and F.

Look at their difference:  $I \oplus F$ .

Consists of alternating/augmenting paths and alternating cycles:



- Order components of  $I \oplus F$  by smallest vertex in each.
- Unwind" components in order.

Consider a pair of matchings I and F.

Look at their difference:  $I \oplus F$ .

Consists of alternating/augmenting paths and alternating cycles:



- Order components of  $I \oplus F$  by smallest vertex in each.
- Unwind" components in order.

Consider a pair of matchings I and F.

Look at their difference:  $I \oplus F$ .

Consists of alternating/augmenting paths and alternating cycles:



- Order components of  $I \oplus F$  by smallest vertex in each.
- Unwind" components in order.

Consider a pair of matchings I and F.

Look at their difference:  $I \oplus F$ .

Consists of alternating/augmenting paths and alternating cycles:



- Order components of  $I \oplus F$  by smallest vertex in each.
- Unwind" components in order.

Consider a pair of matchings I and F.

Look at their difference:  $I \oplus F$ .

Consists of alternating/augmenting paths and alternating cycles:



- Order components of  $I \oplus F$  by smallest vertex in each.
- Unwind" components in order.

Consider a pair of matchings I and F.

Look at their difference:  $I \oplus F$ .

Consists of alternating/augmenting paths and alternating cycles:



- Order components of  $I \oplus F$  by smallest vertex in each.
- Unwind" components in order.

Consider a pair of matchings I and F.

Look at their difference:  $I \oplus F$ .

Consists of alternating/augmenting paths and alternating cycles:



- Order components of  $I \oplus F$  by smallest vertex in each.
- Unwind" components in order.

Consider a pair of matchings I and F.

Look at their difference:  $I \oplus F$ .

Consists of alternating/augmenting paths and alternating cycles:



- Order components of  $I \oplus F$  by smallest vertex in each.
- Unwind" components in order.

Consider a transition  $T = M \rightarrow M'$ . Recall,  $cp(T) = \{(I, F) : \gamma_{I,F} \ni T\}$ .

Consider a transition  $T = M \rightarrow M'$ . Recall,  $cp(T) = \{(I, F) : \gamma_{I,F} \ni T\}$ . We'll define a map  $\eta_T : cp(T) \rightarrow \Omega \times E$ . and  $\eta$  is one-to-one.

Consider a transition  $T = M \rightarrow M'$ . Recall,  $cp(T) = \{(I, F) : \gamma_{I,F} \ni T\}$ . We'll define a map  $\eta_T : cp(T) \rightarrow \Omega \times E$ . and  $\eta$  is one-to-one.

Hence,  $|cp(T)| \le |\Omega| \times |E|$  so congestion satisfies:

$$\rho = \frac{\max_{\mathcal{T}} |\mathrm{cp}(\mathcal{T})|}{|\Omega|} \le m.$$

Consider a transition 
$$T = M \rightarrow M'$$
.  
Recall,  $cp(T) = \{(I, F) : \gamma_{I,F} \ni T\}$ .  
We'll define a map  $\eta_T : cp(T) \rightarrow \Omega \times E$ .  
and  $\eta$  is one-to-one.

Hence,  $|cp(T)| \le |\Omega| \times |E|$  so congestion satisfies:

$$\rho = \frac{\max_{T} |\mathrm{cp}(T)|}{|\Omega|} \le m.$$

Easy to define  $\eta$ :

$$\eta_T(I,F) = (I \cap F) \bigcup (I \oplus F \setminus (M \cup M'))$$

#### ENCODING

Example *I* and *F*:



Transition  $T = M \rightarrow M'$ :



#### ENCODING

Example *I* and *F*:



Transition  $T = M \rightarrow M'$ :



 $\eta_T(I,F) = (I \cap F) \bigcup (I \oplus F \setminus (M \cup M'))$ 

#### ENCODING

Example *I* and *F*:



Transition  $T = M \rightarrow M'$ :



 $\eta_{T}(I,F) = (I \cap F) \bigcup (I \oplus F \setminus (M \cup M' \cup e_{0}))$ where  $e_{0}$  is the first edge of I in the current cycle.





#### **3** RANDOM PERFECT MATCHING

#### FIRST IDEA FOR MARKOV CHAIN

For bipartite graph G = (V, E) with n + n vertices,

let  $\mathcal{P} =$  perfect matchings of G.

Can we design a Markov chain only on  $\mathcal{P}?$ 

What are the transitions?

#### FIRST IDEA FOR MARKOV CHAIN

For bipartite graph G = (V, E) with n + n vertices,

let  $\mathcal{P} =$  perfect matchings of G.

Can we design a Markov chain only on  $\mathcal{P}$ ? What are the transitions?

Enlarge the states: Near-perfect matchings:

let  $\mathcal{N} =$  matchings of G with exactly 2 unmatched vertices.

Let 
$$\Omega = \mathcal{P} \bigcup \mathcal{N}$$
.

Run earlier Markov chain restricted to  $\Omega$ .

#### MARKOV CHAIN FOR PERFECT MATCHINGS

Consider an undirected bipartite graph G = (V, E). Let  $\Omega = \mathcal{P} \bigcup \mathcal{N}$ .

From a matching  $X_t \in \Omega$  the transition  $X_t \to X_{t+1}$  is defined by:

- Choose an edge e = (v, w) uniformly at random from *E*.
- **3** Add: If v and w are unmatched in  $X_t$  then  $X_{t+1} = X_t \bigcup \{e\}$ .
- Slide: If v is unmatched and w is matched (or vice-versa):
  - Let (w, z) denote the matched edge.
- Otherwise, set  $X_{t+1} = X_t$ .



Key properties:

- $|\mathcal{P}| = 1$ : Only 1 perfect matching
- $|\mathcal{N}| \ge 2^{n/4}$ : if *u* and *v* unmatched then  $2^s$  ways to complete where *s* is # of squares.

Conclusion:

Sampling from  $\Omega = \mathcal{P} \bigcup \mathcal{N}$  may not help for sampling from  $\mathcal{P}$ .

Assign matching  $M \in \Omega$  a weight w(M).

Add "Metropolis filter" to the Markov chain so that: Stationary distribution  $\pi(M) \propto w(M)$ .

Choose weights so that:

- $\pi(\mathcal{P}) = 1/\mathsf{poly}(n)$  and every  $P \in \mathcal{P}$  has the same weight.
- **2** Markov chain has mixing time poly(n).
Consider an undirected bipartite graph G = (V, E). Let  $\Omega = \mathcal{P} \bigcup \mathcal{N}$ .

From a matching  $X_t \in \Omega$  the transition  $X_t \to X_{t+1}$  is defined by:

- Choose an edge e = (v, y) uniformly at random from E.
- **3** Add: If v and y are unmatched in  $X_t$  then  $X' = X_t \bigcup \{e\}$ .
- Slide: If v is unmatched and y is matched (or vice-versa):
  - Let (y, z) denote the matched edge.
- If X' is defined then:

set  $X_{t+1} = X'$  with probability min $\{1, w(X')/w(X_t)\}$ 

• Otherwise, set  $X_{t+1} = X_t$ .

# CHOICE OF WEIGHTS

Weight of matching  $M \in \mathcal{P} \cup \mathcal{N}$  depends on unmatched vertices. If  $M \in \mathcal{P}$  then w(M) = 1.

#### CHOICE OF WEIGHTS

Weight of matching  $M \in \mathcal{P} \cup \mathcal{N}$  depends on unmatched vertices. If  $M \in \mathcal{P}$  then w(M) = 1.

Let  $\mathcal{N}(u, v) = \{ M \in \mathcal{N} : u \text{ and } v \text{ are unmatched} \}.$ 

If  $M \in \mathcal{N}(u, v)$  then w(M) = w(u, v) where:

$$w(u,v) = \frac{|\mathcal{P}|}{|\mathcal{N}(u,v)|}$$

#### CHOICE OF WEIGHTS

Weight of matching  $M \in \mathcal{P} \cup \mathcal{N}$  depends on unmatched vertices. If  $M \in \mathcal{P}$  then w(M) = 1.

Let  $\mathcal{N}(u, v) = \{ M \in \mathcal{N} : u \text{ and } v \text{ are unmatched} \}.$ 

If  $M \in \mathcal{N}(u, v)$  then w(M) = w(u, v) where:

$$w(u,v) = \frac{|\mathcal{P}|}{|\mathcal{N}(u,v)|}$$

Note: 
$$\sum_{P \in \mathcal{P}} w(P) = \sum_{N \in \mathcal{N}(u,v)} w(N) = |\mathcal{P}|$$
  
Hence:  $\pi(\mathcal{P}) = \pi(\mathcal{N}(u,v)) = 1/(n^2 + 1).$ 

# RAPID MIXING

Key: for perfect matchings I, F, for  $T = M \rightarrow M' \in \gamma_{I,F}$ ,

$$w(I)w(F) \geq w(M)w(\eta_T(I,F)).$$

Yields that Markov chain is rapidly mixing for these weights.

# RAPID MIXING

Key: for perfect matchings I, F, for  $T = M \rightarrow M' \in \gamma_{I,F}$ ,

$$w(I)w(F) \geq w(M)w(\eta_T(I,F)).$$

Yields that Markov chain is rapidly mixing for these weights. Also, if use weights w(u, v) where:

$$\frac{1}{2}\frac{|\mathcal{P}|}{|\mathcal{N}(u,v)|} \leq w(u,v) \leq 2\frac{|\mathcal{P}|}{|\mathcal{N}(u,v)|}$$

then mixing time slows by a factor of 16.

# RAPID MIXING

Key: for perfect matchings I, F, for  $T = M \rightarrow M' \in \gamma_{I,F}$ ,

$$w(I)w(F) \geq w(M)w(\eta_T(I,F)).$$

Yields that Markov chain is rapidly mixing for these weights. Also, if use weights w(u, v) where:

$$\frac{1}{2}\frac{|\mathcal{P}|}{|\mathcal{N}(u,v)|} \leq w(u,v) \leq 2\frac{|\mathcal{P}|}{|\mathcal{N}(u,v)|}$$

then mixing time slows by a factor of 16.

Key: Can correct slightly wrong weights:

If 
$$w(u, v) = \alpha \frac{|\mathcal{P}|}{|\mathcal{N}(u, v)|}$$
 then  $\pi(\mathcal{N}(u, v)) = \alpha \pi(\mathcal{P})$  so:

- $\bullet$  Generate many samples from  $\pi,$  and then
- Correct the weights w(u, v).

### SIMULATED ANNEALING APPROACH

Input bipartite graph  $G = (L \cup R, E)$  captured by: complete bipartite  $K_{n,n}$  with edge activities for  $y \in L, z \in R$ :

$$\lambda(y,z) = egin{cases} \lambda & ext{if } (y,z) 
ot\in E \ 1 & ext{if } (y,z) \in E \end{cases}$$

Slowly go from  $\lambda = 1$  to  $\lambda \approx 0$ .

#### SIMULATED ANNEALING APPROACH

Input bipartite graph  $G = (L \cup R, E)$  captured by: complete bipartite  $K_{n,n}$  with edge activities for  $y \in L, z \in R$ :

$$\lambda(y,z) = egin{cases} \lambda & ext{if } (y,z) 
ot\in E \ 1 & ext{if } (y,z) \in E \end{cases}$$

Slowly go from  $\lambda = 1$  to  $\lambda \approx 0$ .

Matching *M* of  $K_{n,n}$  has activity:  $\lambda(M) = \prod_{(y,z) \in M} \lambda(y,z)$ .

Redefine 
$$w(u, v) = \frac{\lambda(\mathcal{P})}{\lambda(\mathcal{N}(u, v))}$$

### SIMULATED ANNEALING APPROACH

Input bipartite graph  $G = (L \cup R, E)$  captured by: complete bipartite  $K_{n,n}$  with edge activities for  $y \in L, z \in R$ :

$$\lambda(y,z) = egin{cases} \lambda & ext{if } (y,z) 
ot\in E \ 1 & ext{if } (y,z) \in E \end{cases}$$

Slowly go from  $\lambda = 1$  to  $\lambda \approx 0$ .

Matching *M* of  $K_{n,n}$  has activity:  $\lambda(M) = \prod_{(y,z) \in M} \lambda(y,z)$ .

Redefine 
$$w(u, v) = rac{\lambda(\mathcal{P})}{\lambda(\mathcal{N}(u, v))}$$

Algorithm:

Start with  $\lambda = 1$  and w(u, v) = n for all  $u \in L, v \in R$ . Repeat until  $\lambda < 1/n!$ :

• Set 
$$\lambda = (1 - \frac{1}{2n})\lambda$$
.

**2** Generate  $O(n^2 \log n)$  samples from  $\pi$ .

• Correct the weights w(u, v) for all u, v.



- Start at the complete bipartite graph
- Slowly remove non-edges:
  - Generate many samples from  $\pi$ , and
  - Recalibrate the weights  $w(u, v) = \frac{\lambda(\mathcal{P})}{\lambda(\mathcal{N}(u, v))}$ .



- Start at the complete bipartite graph
- Slowly remove non-edges:
  - Generate many samples from  $\pi$ , and
  - Recalibrate the weights  $w(u, v) = \frac{\lambda(\mathcal{P})}{\lambda(\mathcal{N}(u,v))}$ .



- Start at the complete bipartite graph
- Slowly remove non-edges:
  - Generate many samples from  $\pi$ , and
  - Recalibrate the weights  $w(u, v) = \frac{\lambda(\mathcal{P})}{\lambda(\mathcal{N}(u,v))}$ .



- Start at the complete bipartite graph
- Slowly remove non-edges:
  - Generate many samples from  $\pi$ , and
  - Recalibrate the weights  $w(u, v) = \frac{\lambda(\mathcal{P})}{\lambda(\mathcal{N}(u,v))}$ .



- Start at the complete bipartite graph
- Slowly remove non-edges:
  - Generate many samples from  $\pi$ , and
  - Recalibrate the weights  $w(u, v) = \frac{\lambda(\mathcal{P})}{\lambda(\mathcal{N}(u, v))}$ .

Thank you!