INTRODUCTION TO MCMC

Eric Vigoda

Georgia Tech KAIST (Spring '15)

Guest lecture for KAIST CS 500 Graduate Algorithms Friday, March 6, 2015

2 ERGODICITY

3 What is the Stationary Distribution?

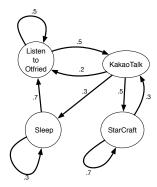
PAGERANK

5 MIXING TIME

6 PREVIEW OF NEXT CLASS

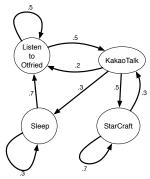
What is a Markov chain?

Example: Life in CS 500, discrete time t = 0, 1, 2, ...:



What is a Markov chain?

Example: Life in CS 500, discrete time t = 0, 1, 2, ...:



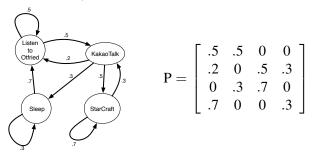
Each vertex is a state of the Markov chain.

Directed graph, possibly with self-loops.

Edge weights represent probability of a transition, so: non-negative and sum of weights of outgoing edges = 1. In general: *N* states $\Omega = \{1, 2, \dots, N\}$.

 $N \times N$ transition matrix *P* where:

P(i,j) = weight of edge $i \rightarrow j = \Pr(\text{going from } i \text{ to } j)$ For earlier example:



P is a stochastic matrix = rows sum to 1.

Time: t = 0, 1, 2, ...Let X_t denote the state at time t. X_t is a random variable. Time: t = 0, 1, 2, ...Let X_t denote the state at time t. X_t is a random variable. For states k and j, $\mathbf{Pr} (X_1 = j | X_0 = k) = \mathbf{P}(k, j)$. Time: t = 0, 1, 2, ...Let X_t denote the state at time t. X_t is a random variable. For states k and j, $\mathbf{Pr} (X_1 = j | X_0 = k) = \mathbf{P}(k, j)$. In general, for $t \ge 1$, given: in state k_0 at time 0, in k_1 at time 1, ..., in k_{t-1} at time t - 1, what's the probability of being in state j at time t? Time: t = 0, 1, 2, ...Let X_t denote the state at time t. X_t is a random variable. For states k and j, $\Pr(X_1 = j | X_0 = k) = \Pr(k, j)$. In general, for $t \ge 1$, given: in state k_0 at time 0, in k_1 at time 1, ..., in k_{t-1} at time t - 1, what's the probability of being in state i at time t^2 .

what's the probability of being in state *j* at time *t*?

$$\mathbf{Pr} (X_t = j \mid X_0 = k_0, X_1 = k_1, \dots, X_{t-1} = k_{t-1}) \\ = \mathbf{Pr} (X_t = j \mid X_{t-1} = k_{t-1}) \\ = \mathbf{P}(k_{t-1}, j).$$

Time: t = 0, 1, 2, ...Let X_t denote the state at time t. X_t is a random variable. For states k and j, $\mathbf{Pr} (X_1 = j \mid X_0 = k) = \mathbf{P}(k, j)$. In general, for $t \ge 1$, given: in state k_0 at time 0, in k_1 at time 1, ..., in k_{t-1} at time t - 1, what's the probability of being in state i at time t?

$$\mathbf{Pr} (X_t = j \mid X_0 = k_0, X_1 = k_1, \dots, X_{t-1} = k_{t-1}) \\ = \mathbf{Pr} (X_t = j \mid X_{t-1} = k_{t-1}) \\ = \mathbf{P}(k_{t-1}, j).$$

Process is memoryless -

only current state matters, previous states do not matter. Known as **Markov property**, hence the term Markov chain. What's probability *Listen* at time 2 given *Kakao* at time 0? Try all possibilities for state at time 1.

What's probability *Listen* at time 2 given *Kakao* at time 0? Try all possibilities for state at time 1.

$$\begin{aligned} \mathbf{Pr} \left(X_2 = Listen \mid X_0 = Kakao \right) \\ &= \mathbf{Pr} \left(X_2 = Listen \mid X_1 = Listen \right) \times \mathbf{Pr} \left(X_1 = Listen \mid X_0 = Kakao \right) \\ &+ \mathbf{Pr} \left(X_2 = Listen \mid X_1 = Kakao \right) \times \mathbf{Pr} \left(X_1 = Kakao \mid X_0 = Kakao \right) \\ &+ \mathbf{Pr} \left(X_2 = Listen \mid X_1 = StarCraft \right) \times \mathbf{Pr} \left(X_1 = StarCraft \mid X_0 = Kakao \right) \\ &+ \mathbf{Pr} \left(X_2 = Listen \mid X_1 = Sleep \right) \times \mathbf{Pr} \left(X_1 = Sleep \mid X_0 = Kakao \right) \end{aligned}$$

What's probability *Listen* at time 2 given *Kakao* at time 0? Try all possibilities for state at time 1.

$$\begin{aligned} & \operatorname{Pr} \left(X_2 = Listen \mid X_0 = Kakao \right) \\ &= \operatorname{Pr} \left(X_2 = Listen \mid X_1 = Listen \right) \times \operatorname{Pr} \left(X_1 = Listen \mid X_0 = Kakao \right) \\ & + \operatorname{Pr} \left(X_2 = Listen \mid X_1 = Kakao \right) \times \operatorname{Pr} \left(X_1 = Kakao \mid X_0 = Kakao \right) \\ & + \operatorname{Pr} \left(X_2 = Listen \mid X_1 = StarCraft \right) \times \operatorname{Pr} \left(X_1 = StarCraft \mid X_0 = Kakao \right) \\ & + \operatorname{Pr} \left(X_2 = Listen \mid X_1 = Sleep \right) \times \operatorname{Pr} \left(X_1 = Sleep \mid X_0 = Kakao \right) \\ &= (.5)(.2) + 0 + 0 + (.7)(.3) = .31 \end{aligned}$$

$$\mathbf{P} = \begin{bmatrix} .5 & .5 & 0 & 0 \\ .2 & 0 & .5 & .3 \\ 0 & .3 & .7 & 0 \\ .7 & 0 & 0 & .3 \end{bmatrix} \qquad \mathbf{P}^2 = \begin{bmatrix} .35 & .25 & .15 \\ .31 & .25 & .35 & .09 \\ .06 & .21 & .64 & .09 \\ .56 & .35 & 0 & .09 \end{bmatrix}$$

States: 1=Listen, 2=Kakao, 3=StarCraft, 4=Sleep.

2-step transition probabilities: use P^2 . In general, for states *i* and *j*:

$$\mathbf{Pr} (X_{t+2} = j \mid X_t = i) \\
= \sum_{k=1}^{N} \mathbf{Pr} (X_{t+2} = j \mid X_{t+1} = k) \times \mathbf{Pr} (X_{t+1} = k \mid X_t = i) \\
= \sum_{k} \mathbf{P}(k, j) \mathbf{P}(i, k) = \sum_{k} \mathbf{P}(i, k) \mathbf{P}(k, j) = \mathbf{P}^2(i, j)$$

2-step transition probabilities: use P^2 . In general, for states *i* and *j*:

$$\begin{aligned} & \mathbf{Pr} \left(X_{t+2} = j \mid X_t = i \right) \\ &= \sum_{k=1}^{N} \mathbf{Pr} \left(X_{t+2} = j \mid X_{t+1} = k \right) \times \mathbf{Pr} \left(X_{t+1} = k \mid X_t = i \right) \\ &= \sum_{k} \mathbf{P}(k,j) \mathbf{P}(i,k) = \sum_{k} \mathbf{P}(i,k) \mathbf{P}(k,j) = \mathbf{P}^2(i,j) \end{aligned}$$

 ℓ -step transition probabilities: use P^{ℓ} . For states *i* and *j* and integer $\ell \geq 1$,

$$\mathbf{Pr}(X_{t+\ell}=j\mid X_t=i)=\mathbf{P}^{\ell}(i,j),$$

Suppose the state at time 0 is not fixed but is chosen from a probability distribution μ_0 . Notation: $X_0 \sim \mu_0$.

What is the distribution for X_1 ?

Suppose the state at time 0 is not fixed but is chosen from a probability distribution μ_0 . Notation: $X_0 \sim \mu_0$.

What is the distribution for X_1 ? For state *j*,

$$\mathbf{Pr} (X_1 = j) = \sum_{i=1}^{N} \mathbf{Pr} (X_0 = i) \times \mathbf{Pr} (X_1 = j \mid X_0 = i)$$
$$= \sum_{i} \mu_0(i) \mathbf{P}(i, j) = (\mu_0 \mathbf{P})(j)$$

So $X_1 \sim \mu_1$ where $\mu_1 = \mu_0 P$.

Suppose the state at time 0 is not fixed but is chosen from a probability distribution μ_0 . Notation: $X_0 \sim \mu_0$.

What is the distribution for X_1 ? For state *j*,

$$\begin{aligned} \mathbf{Pr} \left(X_1 = j \right) &= \sum_{i=1}^{N} \mathbf{Pr} \left(X_0 = i \right) \times \mathbf{Pr} \left(X_1 = j \mid X_0 = i \right) \\ &= \sum_{i} \mu_0(i) \mathbf{P}(i,j) = (\mu_0 \mathbf{P})(j) \end{aligned}$$

So $X_1 \sim \mu_1$ where $\mu_1 = \mu_0 P$. And $X_t \sim \mu_t$ where $\mu_t = \mu_0 P^t$.

$$\mathbf{P} = \begin{bmatrix} .5 & .5 & 0 & 0 \\ .2 & 0 & .5 & .3 \\ 0 & .3 & .7 & 0 \\ .7 & 0 & 0 & .3 \end{bmatrix}$$

$$P = \begin{bmatrix} .5 & .5 & 0 & 0 \\ .2 & 0 & .5 & .3 \\ 0 & .3 & .7 & 0 \\ .7 & 0 & 0 & .3 \end{bmatrix} \qquad P^2 = \begin{bmatrix} .35 & .25 & .15 \\ .31 & .25 & .35 & .09 \\ .06 & .21 & .64 & .09 \\ .56 & .35 & 0 & .09 \end{bmatrix}$$

P =	.5 .2 0 .7	.5 0 .3 0	0 .5 .7 0	$\begin{bmatrix} 0 \\ .3 \\ 0 \\ .3 \end{bmatrix}$	$P^2 =$.35 .31 .06 .56	.25 .25 .21 .35	.25 .35 .64 0	.15 .09 .09 .09	
	Р	10 _		.247770 .245167	.244781 .244349	.4022 .4056	.67 88	.1051	81 96	

.239532	.243413	.413093	.103963
.251635	.245423	.397189	.105754

$$P = \begin{bmatrix} .5 & .5 & 0 & 0 \\ .2 & 0 & .5 & .3 \\ 0 & .3 & .7 & 0 \\ .7 & 0 & 0 & .3 \end{bmatrix} \qquad P^2 = \begin{bmatrix} .35 & .25 & .15 \\ .31 & .25 & .35 & .09 \\ .06 & .21 & .64 & .09 \\ .56 & .35 & 0 & .09 \end{bmatrix}$$

$P^{10} =$.247770	.244781	.402267	.105181
	.245167	.244349	.405688	.104796
	.239532	.243413	.413093	.103963
	.251635	.245423	.397189	.105754

P ²⁰ =	.244190	.244187	.406971	.104652
	.244187	.244186	.406975	.104651
	.244181	.244185	.406984	.104650
	.244195	.244188	.406966	.104652

Let's look again at our CS 500 example:

$$\mathbf{P} = \begin{bmatrix} .5 & .5 & 0 & 0 \\ .2 & 0 & .5 & .3 \\ 0 & .3 & .7 & 0 \\ .7 & 0 & 0 & .3 \end{bmatrix} \qquad \mathbf{P}^2 = \begin{bmatrix} .35 & .25 & .15 \\ .31 & .25 & .35 & .09 \\ .06 & .21 & .64 & .09 \\ .56 & .35 & 0 & .09 \end{bmatrix}$$

$P^{10} =$.247770	.244781	.402267	.105181
	.245167	.244349	.405688	.104796
	.239532	.243413	.413093	.103963
	.251635	.245423	.397189	.105754

	.244190	.244187	.406971	.104652
$P^{20} =$.244187	.244186	.406975	.104651
	.244181	.244185	.406984	.104651 .104650
	.244195	.244188	.406966	.104652

Columns are converging to

 $\pi = [.244186, .244186, .406977, .104651].$

For big *t*,

$\mathbf{P}^t \approx$.244186	.244186	.406977	.104651]
	.244186	.244186	.406977	.104651
	.244186	.244186	.406977	.104651
	.244186	.244186	.406977	.104651

For big *t*,

$\mathbf{P}^t \approx$.244186	.244186	.406977	.104651]
	.244186	.244186	.406977	.104651
	.244186	.244186	.406977	.104651
	.244186	.244186	.406977	.104651

Regardless of where it starts X_0 , for big *t*:

$$\begin{aligned} & \mathbf{Pr} \left(X_t = 1 \right) &= .244186 \\ & \mathbf{Pr} \left(X_t = 2 \right) &= .244186 \\ & \mathbf{Pr} \left(X_t = 3 \right) &= .406977 \\ & \mathbf{Pr} \left(X_t = 4 \right) &= .104651 \end{aligned}$$

For big *t*,

	.244186	.244186	.406977	.104651]
$\mathbf{P}^t \approx$.244186	.244186	.406977	.104651
	.244186	.244186	.406977	.104651 .104651 .104651 .104651
	.244186	.244186	.406977	.104651

Regardless of where it starts X_0 , for big *t*:

$$\mathbf{Pr} (X_t = 1) = .244186$$

$$\mathbf{Pr} (X_t = 2) = .244186$$

$$\mathbf{Pr} (X_t = 3) = .406977$$

$$\mathbf{Pr} (X_t = 4) = .104651$$
Let $\pi = [.244186, .244186, .406977, .104651].$
n other words, for big $t, X_t \sim \pi$.

 π is called a *stationary distribution*.

Let $\pi = [$.244186, .244186, .406977, .104651]. π is called a *stationary distribution*.

Let $\pi = [$.244186, .244186, .406977, .104651]. π is called a *stationary distribution*.

Once we reach π we stay in π : if $X_t \sim \pi$ then $X_{t+1} \sim \pi$, in other words, $\pi \mathbf{P} = \pi$.

Let $\pi = [$.244186, .244186, .406977, .104651]. π is called a *stationary distribution*.

Once we reach π we stay in π : if $X_t \sim \pi$ then $X_{t+1} \sim \pi$, in other words, $\pi \mathbf{P} = \pi$.

Any distribution π where $\pi P = \pi$ is called a stationary distribution of the Markov chain.

Key questions:

- When is there a stationary distribution?
- If there is at least one, is it unique or more than one?
- Assuming there's a unique stationary distribution:
 - Do we always reach it?
 - What is it?
 - Mixing time = Time to reach unique stationary distribution

Algorithmic Goal:

- If we have a distribution π that we want to sample from, can we design a Markov chain that has:
 - Unique stationary distribution π ,
 - From every X_0 we always reach π ,
 - Fast mixing time.

3 What is the Stationary Distribution?

4 PAGERANK

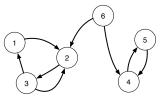
5 MIXING TIME

6 PREVIEW OF NEXT CLASS

Want a unique stationary distribution π and that get to it from every starting state X_0 .

Want a unique stationary distribution π and that get to it from every starting state X_0 .

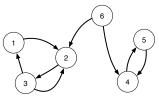
But if multiple strongly connected components (SCCs) then can't go from one to the other:



Starting at 1 gets to different distribution than starting at 5.

Want a unique stationary distribution π and that get to it from every starting state X_0 .

But if multiple strongly connected components (SCCs) then can't go from one to the other:



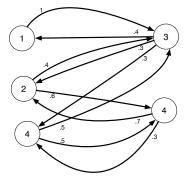
Starting at 1 gets to different distribution than starting at 5.

State *i* communicates with state *j* if starting at *i* can reach *j*:

there exists t, $P^t(i,j) > 0$.

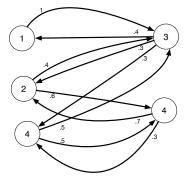
Markov chain is irreducible if all pairs of states communicate..

Example of bipartite Markov chain:



Starting at 1 gets to different distribution than starting at 3.

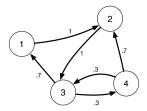
Example of bipartite Markov chain:



Starting at 1 gets to different distribution than starting at 3.

Need that no periodicity.

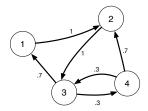
Aperiodic



Return times for state *i* are times $R_i = \{t : P^t(i, i) > 0\}$. Above example: $R_1 = \{3, 5, 6, 8, 9, ...\}$.

Let $r = \gcd(R_i)$ be the period for state *i*.

Aperiodic



Return times for state *i* are times $R_i = \{t : P^t(i, i) > 0\}$. Above example: $R_1 = \{3, 5, 6, 8, 9, ...\}$.

Let $r = \gcd(R_i)$ be the period for state *i*.

If P is irreducible then all states have the same period. If r = 2 then the Markov chain is bipartite. A Markov chain is aperiodic if r = 1. Ergodic = Irreducible and aperiodic.

Ergodic = Irreducible and aperiodic.

Fundamental Theorem for Markov Chains: Ergodic Markov chain has a unique stationary distribution π . And for all initial $X_0 \sim \mu_0$ then:

 $\lim_{t\to\infty}\mu_t=\pi.$

In other words, for big enough *t*, all rows of P^t are π .

Ergodic = Irreducible and aperiodic.

Fundamental Theorem for Markov Chains: Ergodic Markov chain has a unique stationary distribution π . And for all initial $X_0 \sim \mu_0$ then:

 $\lim_{t\to\infty}\mu_t=\pi.$

In other words, for big enough *t*, all rows of P^t are π .

How big does t need to be?

What is π ?

Proof idea: Ergodic MC has Unique Stationary Distribution

What is a π ?

What is a π ?

Fix a state *i* and set $X_0 = i$. Let *T* be the first time we visit state *i* again. *T* is a random variable. For every state *j*, let $\rho(j) =$ expected number of visits to *j* up to time *T*.

(Note, $\rho(i) = 1.$)

Let $\pi(j) = \rho(j)/Z$ where $Z = \sum_k \rho(k)$. Can verify that this π is a stationary distribution. What is a π ?

Fix a state *i* and set $X_0 = i$. Let *T* be the first time we visit state *i* again. *T* is a random variable. For every state *j*, let $\rho(j) =$ expected number of visits to *j* up to time *T*. (Note $\rho(j) = 1$)

(Note, $\rho(i) = 1.$)

Let $\pi(j) = \rho(j)/Z$ where $Z = \sum_k \rho(k)$. Can verify that this π is a stationary distribution.

Why is it unique and we always reach it?

What is a π ?

Fix a state *i* and set $X_0 = i$. Let *T* be the first time we visit state *i* again. *T* is a random variable. For every state *j*, let $\rho(j) =$ expected number of visits to *j* up to time *T*.

(Note, $\rho(i) = 1$.)

Let $\pi(j) = \rho(j)/Z$ where $Z = \sum_k \rho(k)$. Can verify that this π is a stationary distribution.

Why is it unique and we always reach it? Make 2 chains (X_t) and (Y_t) :

 X_0 is arbitrary, and

 Y_0 is chosen from π so that $Y_t \sim \pi$ for all t.

Using irreducibility, can "couple" the transitions of these chains: for big *t* we have $X_t = Y_t$ and thus $X_t \sim \pi$.

2 ERGODICITY

3 What is the Stationary Distribution?

PAGERANK

5 MIXING TIME

6 PREVIEW OF NEXT CLASS

Determining π : Symmetric Markov Chain

Symmetric if for all pairs i, j: P(i, j) = P(j, i).

Then π is uniformly distributed over all of the states $\{1, \ldots, N\}$:

$$\pi(j) = \frac{1}{N}$$
 for all states *j*.

Determining *π*: Symmetric Markov Chain

Symmetric if for all pairs i, j: P(i, j) = P(j, i).

Then π is uniformly distributed over all of the states $\{1, \ldots, N\}$:

$$\pi(j) = \frac{1}{N}$$
 for all states *j*.

Determining *π*: Symmetric Markov Chain

Symmetric if for all pairs i, j: P(i, j) = P(j, i). Then π is uniformly distributed over all of the states $\{1, ..., N\}$:

$$\pi(j) = \frac{1}{N}$$
 for all states *j*.

$$(\pi \mathbf{P})(j) = \sum_{i=1}^{N} \pi(i) \mathbf{P}(i,j)$$

Determining π : Symmetric Markov Chain

Symmetric if for all pairs i, j: P(i, j) = P(j, i). Then π is uniformly distributed over all of the states $\{1, ..., N\}$:

$$\pi(j) = \frac{1}{N}$$
 for all states *j*.

$$(\pi \mathbf{P})(j) = \sum_{i=1}^{N} \pi(i) \mathbf{P}(i,j)$$
$$= \frac{1}{N} \sum_{i=1}^{N} \mathbf{P}(i,j)$$

Determining *π*: Symmetric Markov Chain

Symmetric if for all pairs i, j: P(i, j) = P(j, i). Then π is uniformly distributed over all of the states $\{1, ..., N\}$:

$$\pi(j) = \frac{1}{N}$$
 for all states *j*.

$$(\pi \mathbf{P})(j) = \sum_{i=1}^{N} \pi(i) \mathbf{P}(i,j)$$

= $\frac{1}{N} \sum_{i=1}^{N} \mathbf{P}(i,j)$
= $\frac{1}{N} \sum_{i=1}^{N} \mathbf{P}(j,i)$ since P is symmetric

Determining π : Symmetric Markov Chain

Symmetric if for all pairs i, j: P(i, j) = P(j, i). Then π is uniformly distributed over all of the states $\{1, ..., N\}$:

$$\pi(j) = \frac{1}{N}$$
 for all states *j*.

$$(\pi P)(j) = \sum_{i=1}^{N} \pi(i) P(i,j)$$

= $\frac{1}{N} \sum_{i=1}^{N} P(i,j)$
= $\frac{1}{N} \sum_{i=1}^{N} P(j,i)$ since P is symmetric
= $\frac{1}{N}$ since rows of P always sum to 1

Determining π : Symmetric Markov Chain

Symmetric if for all pairs i, j: P(i, j) = P(j, i). Then π is uniformly distributed over all of the states $\{1, ..., N\}$:

$$\pi(j) = \frac{1}{N}$$
 for all states *j*.

$$(\pi P)(j) = \sum_{i=1}^{N} \pi(i) P(i,j)$$

$$= \frac{1}{N} \sum_{i=1}^{N} P(i,j)$$

$$= \frac{1}{N} \sum_{i=1}^{N} P(j,i) \text{ since P is symmetric}$$

$$= \frac{1}{N} \text{ since rows of P always sum to 1}$$

$$= \pi(j)$$

 $\pi(i)\mathbf{P}(i,j) = \pi(j)\mathbf{P}(j,i).$

If can find such a π then it is the stationary distribution.

 $\pi(i)\mathbf{P}(i,j) = \pi(j)\mathbf{P}(j,i).$

If can find such a π then it is the stationary distribution.

 $\pi(i)\mathbf{P}(i,j) = \pi(j)\mathbf{P}(j,i).$

If can find such a π then it is the stationary distribution.

$$(\pi \mathbf{P})(j) = \sum_{i=1}^{N} \pi(i) \mathbf{P}(i,j)$$

 $\pi(i)\mathbf{P}(i,j) = \pi(j)\mathbf{P}(j,i).$

If can find such a π then it is the stationary distribution.

$$(\pi \mathbf{P})(j) = \sum_{i=1}^{N} \pi(i) \mathbf{P}(i,j)$$
$$= \sum_{i=1}^{N} \pi(j) \mathbf{P}(j,i) \text{ since P is reversible}$$

 $\pi(i)\mathbf{P}(i,j) = \pi(j)\mathbf{P}(j,i).$

If can find such a π then it is the stationary distribution.

$$(\pi P)(j) = \sum_{i=1}^{N} \pi(i) P(i,j)$$

=
$$\sum_{i=1}^{N} \pi(j) P(j,i)$$
 since P is reversible
=
$$\pi(j) \sum_{i=1}^{N} P(j,i)$$

 $\pi(i)\mathbf{P}(i,j) = \pi(j)\mathbf{P}(j,i).$

If can find such a π then it is the stationary distribution.

$$(\pi P)(j) = \sum_{i=1}^{N} \pi(i) P(i, j)$$

=
$$\sum_{i=1}^{N} \pi(j) P(j, i) \text{ since P is reversible}$$

=
$$\pi(j) \sum_{i=1}^{N} P(j, i)$$

=
$$\pi(j)$$

Symmetric: for edge (i, j), P(i, j) = P(j, i) = 1/d. So π is uniform: $\pi(i) = 1/n$.

Symmetric: for edge (i,j), P(i,j) = P(j,i) = 1/d. So π is uniform: $\pi(i) = 1/n$.

Random walk on a general connected undirected graph *G*: What is π ?

Symmetric: for edge (i,j), P(i,j) = P(j,i) = 1/d. So π is uniform: $\pi(i) = 1/n$.

Random walk on a general connected undirected graph *G*: What is π ?

Consider $\pi(i) = d(i)/Z$ where d(i) = degree of vertex *i* and $Z = \sum_{j \in V} d(j)$. (Note, Z = 2m = 2|E|.) Check it's reversible: $\pi(i)P(i,j) = \frac{d(i)}{Z}\frac{1}{d(i)} = \frac{1}{Z} = \pi(j)P(j,i)$.

Symmetric: for edge (i,j), P(i,j) = P(j,i) = 1/d. So π is uniform: $\pi(i) = 1/n$.

Random walk on a general connected undirected graph *G*: What is π ?

Consider $\pi(i) = d(i)/Z$ where d(i) = degree of vertex *i* and $Z = \sum_{j \in V} d(j)$. (Note, Z = 2m = 2|E|.) Check it's reversible: $\pi(i)P(i,j) = \frac{d(i)}{Z}\frac{1}{d(i)} = \frac{1}{Z} = \pi(j)P(j,i)$.

What if G is a directed graph?

Symmetric: for edge (i,j), P(i,j) = P(j,i) = 1/d. So π is uniform: $\pi(i) = 1/n$.

Random walk on a general connected undirected graph *G*: What is π ?

Consider $\pi(i) = d(i)/Z$ where d(i) = degree of vertex *i* and $Z = \sum_{j \in V} d(j)$. (Note, Z = 2m = 2|E|.) Check it's reversible: $\pi(i)P(i,j) = \frac{d(i)}{Z}\frac{1}{d(i)} = \frac{1}{Z} = \pi(j)P(j,i)$.

What if G is a directed graph?

Then it may not be reversible, and if it's not reversible: then usually we can't figure out the stationary distribution since typically N is HUGE.

2 ERGODICITY

3 What is the Stationary Distribution?

5 MIXING TIME

PageRank is an algorithm devised by Brin and Page 1998: determine the "importance" of webpages.

PageRank is an algorithm devised by Brin and Page 1998: determine the "importance" of webpages.

Webgraph:

- V = webpages
- E = directed edges for hyperlinks

Let $\pi(x) =$ "rank" of page *x*. We are trying to define $\pi(x)$ in a sensible way. PageRank is an algorithm devised by Brin and Page 1998: determine the "importance" of webpages.

Webgraph:

V = webpages E = directed edges for hyperlinks

Notation:

For page $x \in V$, let:

Out(x) = $\{y : x \to y \in E\}$ = outgoing edges from x In(x) = $\{w : w \to x \in E\}$ = incoming edges to x

Let $\pi(x) =$ "rank" of page *x*. We are trying to define $\pi(x)$ in a sensible way.

First idea for ranking pages: like academic papers use citation counts

Here, citation = link to a page.

So set $\pi(x) = |In(x)| =$ number of links to *x*.

What if:

Georgia Tech's webpage has 500 links, one is to Eric's page. KAIST's webpage has only 5 links, one is to Otfried's page.

Which link is more valuable?

What if:

Georgia Tech's webpage has 500 links, one is to Eric's page. KAIST's webpage has only 5 links, one is to Otfried's page.

Which link is more valuable?

Academic papers: If a paper cites 50 other papers, then each reference gets 1/50 of a citation.

What if:

Georgia Tech's webpage has 500 links, one is to Eric's page. KAIST's webpage has only 5 links, one is to Otfried's page.

Which link is more valuable?

Academic papers: If a paper cites 50 other papers, then each reference gets 1/50 of a citation.

Webpages: If a page y has |Out(y)| outgoing links, then: each linked page gets 1/|Out(y)|.

New solution:

$$\pi(x) = \sum_{y \in \operatorname{In}(x)} \frac{1}{|\operatorname{Out}(y)|}.$$

Previous:

$$\pi(x) = \sum_{y \in \operatorname{In}(x)} \frac{1}{|\operatorname{Out}(y)|}.$$

But if *CNN* has a link to a page that's more important than if *KAIST CS* has a link to it.

Previous:

$$\pi(x) = \sum_{y \in \operatorname{In}(x)} \frac{1}{|\operatorname{Out}(y)|}.$$

But if *CNN* has a link to a page that's more important than if *KAIST CS* has a link to it.

Solution: define $\pi(x)$ recursively. Page *y* has importance $\pi(y)$. A link from *y* gets $\pi(y)/|Out(y)|$ of a citation.

$$\pi(x) = \sum_{y \in \text{In}(x)} \frac{\pi(y)}{|\text{Out}(y)|}.$$

Importance of page *x*:

$$\pi(x) = \sum_{y \in \operatorname{In}(x)} \frac{\pi(y)}{|\operatorname{Out}(y)|}.$$

Importance of page x:

$$\pi(x) = \sum_{y \in \text{In}(x)} \frac{\pi(y)}{|\text{Out}(y)|}.$$

Recursive definition of π , how do we find it?

Importance of page x:

$$\pi(x) = \sum_{y \in \text{In}(x)} \frac{\pi(y)}{|\text{Out}(y)|}.$$

Recursive definition of π , how do we find it?

Look at the random walk on the webgraph G = (V, E). From a page $y \in V$, choose a random link and follow it. This is a Markov chain. For $y \to x \in E$ then:

$$\mathbf{P}(y,x) = \frac{1}{|\mathrm{Out}(y)|}$$

What is the stationary distribution of this Markov chain?

Random walk on the webgraph G = (V, E). For $y \rightarrow x \in E$ then:

$$\mathbf{P}(y,x) = \frac{1}{|\mathrm{Out}(y)|}$$

What is the stationary distribution of this Markov chain?

Random walk on the webgraph G = (V, E). For $y \rightarrow x \in E$ then:

$$\mathsf{P}(y,x) = \frac{1}{|\mathsf{Out}(y)|}$$

What is the stationary distribution of this Markov chain? Need to find π where $\pi = \pi P$. Thus,

$$\pi(x) = \sum_{y \in V} \pi(y) \mathsf{P}(y, x) = \sum_{y \in \mathsf{In}(x)} \frac{\pi(y)}{|\mathsf{Out}(y)|}.$$

This is identical to the definition of the importance vector π .

Summary: the stationary distribution of the random walk on the webgraph gives the importance $\pi(x)$ of a page *x*.

Random walk on the webgraph G = (V, E).

Is π the only stationary distribution? In other words, is the Markov chain ergodic? Random walk on the webgraph G = (V, E).

Is π the only stationary distribution? In other words, is the Markov chain ergodic?

Need that G is strongly connected – it probably is not. And some pages have no outgoing links...

then hit the "random" button!

Random walk on the webgraph G = (V, E).

Is π the only stationary distribution? In other words, is the Markov chain ergodic?

Need that G is strongly connected – it probably is not. And some pages have no outgoing links...

then hit the "random" button!

Solution to make it ergodic: Introduce "damping factor" α where $0 < \alpha \le 1$. (in practice apparently use $\alpha \approx .85$)

From page *y*,

with prob. α follow a random outgoing link from page *y*. with prob. $1 - \alpha$ go to a completely random page (uniformly chosen from all pages *V*). Let N = |V| denote number of webpages. Transition matrix of new Random Surfer chain:

$$\mathbf{P}(y,x) = \begin{cases} \frac{1-\alpha}{N} & \text{if } y \to x \notin E\\ \frac{1-\alpha}{N} + \frac{\alpha}{|\operatorname{Out}(y)|} & \text{if } y \to x \in E \end{cases}$$

This new Random Surfer Markov chain is ergodic. Thus, unique stationary distribution is the desired π . Let N = |V| denote number of webpages. Transition matrix of new Random Surfer chain:

$$\mathbf{P}(y,x) = \begin{cases} \frac{1-\alpha}{N} & \text{if } y \to x \notin E\\ \frac{1-\alpha}{N} + \frac{\alpha}{|\operatorname{Out}(y)|} & \text{if } y \to x \in E \end{cases}$$

This new Random Surfer Markov chain is ergodic. Thus, unique stationary distribution is the desired π .

How to find π ?

Take last week's π , and compute πP^t for big *t*. What's a big enough *t*?

2 ERGODICITY

3 What is the Stationary Distribution?

PAGERANK

How fast does an ergodic MC reach its unique stationary π ?

How fast does an ergodic MC reach its unique stationary π ?

Need to measure distance from π , use total variation distance. For distributions μ and ν on set Ω :

$$\mathrm{d}_{\mathrm{TV}}(\mu,\nu) = \frac{1}{2} \sum_{x \in \Omega} |\mu(x) - \nu(x)|.$$

How fast does an ergodic MC reach its unique stationary π ? Need to measure distance from π , use total variation distance.

For distributions μ and ν on set Ω :

$$\mathrm{d}_{\mathrm{TV}}(\mu,\nu) = \frac{1}{2}\sum_{x\in\Omega}|\mu(x)-\nu(x)|.$$

Example: $\Omega = \{1, 2, 3, 4\}.$ μ is uniform: $\mu(1) = \mu(2) = \mu(3) = \mu(4) = .25.$ And ν has: $\nu(1) = .5, \nu(2) = .1, \nu(3) = .15, \nu(4) = .25.$

$$d_{\rm TV}(\mu,\nu) = \frac{1}{2}(.25 + .15 + .1 + 0) = .25$$

Consider ergodic MC with states Ω , transition matrix P, and unique stationary distribution π . For state $x \in \Omega$, time to mix from *x*:

$$T(x) = \min\{t : d_{\mathrm{TV}}(\mathrm{P}^t(x, \cdot), \pi) \leq 1/4.$$

Consider ergodic MC with states Ω , transition matrix P, and unique stationary distribution π . For state $x \in \Omega$, time to mix from *x*:

$$T(x) = \min\{t : d_{\mathrm{TV}}(\mathsf{P}^t(x, \cdot), \pi) \le 1/4.$$

Then, mixing time $T_{mix} = max_x T(x)$. Summarizing in words:

mixing time is time to get within distance $\leq 1/4$ of π from the worst initial state X_0 .

Consider ergodic MC with states Ω , transition matrix P, and unique stationary distribution π . For state $x \in \Omega$, time to mix from *x*:

 $T(x) = \min\{t : d_{\mathrm{TV}}(\mathrm{P}^t(x, \cdot), \pi) \leq 1/4.$

Then, mixing time $T_{mix} = max_x T(x)$. Summarizing in words:

mixing time is time to get within distance $\leq 1/4$ of π from the worst initial state X_0 .

Choice of constant 1/4 is somewhat arbitrary. Can get within distance $\leq \epsilon$ in time $O(T_{mix} \log(1/\epsilon))$.

Mixing Time of Random Surfer

Coupling proof: Consider 2 copies of the Random Surfer chain (X_t) and (Y_t) .

Choose Y_0 from π . Thus, $Y_t \sim \pi$ for all t. And X_0 is arbitrary.

Mixing Time of Random Surfer

Coupling proof: Consider 2 copies of the Random Surfer chain (X_t) and (Y_t) .

Choose Y_0 from π . Thus, $Y_t \sim \pi$ for all t. And X_0 is arbitrary.

If $X_{t-1} = Y_{t-1}$ then they choose the same transition at time *t*. If $X_{t-1} \neq Y_{t-1}$ then with prob. $1 - \alpha$ choose the same random page *z* for both chains.

Therefore,

$$\mathbf{Pr}\left(X_t\neq Y_t\right)\leq \alpha^t.$$

Mixing Time of Random Surfer

Coupling proof: Consider 2 copies of the Random Surfer chain (X_t) and (Y_t) .

Choose Y_0 from π . Thus, $Y_t \sim \pi$ for all t. And X_0 is arbitrary.

If $X_{t-1} = Y_{t-1}$ then they choose the same transition at time *t*. If $X_{t-1} \neq Y_{t-1}$ then with prob. $1 - \alpha$ choose the same random page *z* for both chains.

Therefore,

$$\mathbf{Pr}\left(X_t\neq Y_t\right)\leq \alpha^t.$$

Setting: $t \ge -2/\log(\alpha)$ we have $\Pr(X_t \ne Y_t) \le 1/4$. Therefore, mixing time:

$$T_{mix} \le \frac{-2}{\log \alpha} \approx 8.5$$
 for $\alpha = .85$.

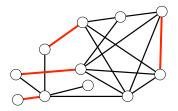
2 Ergodicity

3 What is the Stationary Distribution?

PAGERANK

5 MIXING TIME

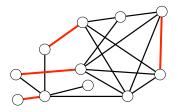
Undirected graph:



Matching = subset of vertex disjoint edges.

Let Ω = collection of all matchings of *G* (of all sizes).

Undirected graph:



Matching = subset of vertex disjoint edges.

Let Ω = collection of all matchings of *G* (of all sizes).

Can we generate a matching uniformly at random from Ω ? in time polynomial in n = |V|? Consider an undirected graph G = (V, E).

From a matching X_t the transition $X_t \rightarrow X_{t+1}$ is defined as follows:

- Choose an edge e = (v, w) uniformly at random from *E*.
- **②** If $e \in X_t$ then set $X_{t+1} = X_t \setminus \{e\}$.
- Solution If *v* and *w* are unmatched in X_t then set $X_{t+1} = X_t \bigcup \{e\}$.
- Otherwise, set $X_{t+1} = X_t$.

Symmetric and ergodic and thus π is uniform over Ω .

Consider an undirected graph G = (V, E).

From a matching X_t the transition $X_t \rightarrow X_{t+1}$ is defined as follows:

- Choose an edge e = (v, w) uniformly at random from *E*.
- If $e \in X_t$ then set $X_{t+1} = X_t \setminus \{e\}$.
- Solution If *v* and *w* are unmatched in X_t then set $X_{t+1} = X_t \bigcup \{e\}$.
- Otherwise, set $X_{t+1} = X_t$.

Symmetric and ergodic and thus π is uniform over Ω .

How fast does it reach π ?

Next class: we'll see that it's close after poly(n) steps for every G.