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What is a Markov chain?

Example: Life in CS 500, discrete time t = 0, 1, 2, . . . :

Listen 
to

Otfried

StarCraft Sleep

KakaoTalk
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.3 .5
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.7

Each vertex is a state of the Markov chain.

Directed graph, possibly with self-loops.

Edge weights represent probability of a transition, so:
non-negative and sum of weights of outgoing edges = 1.
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Transition matrix

In general: N states Ω = {1, 2, . . . ,N}.

N × N transition matrix P where:
P(i, j) = weight of edge i→ j = Pr (going from i to j)

For earlier example:

Listen 
to

Otfried

StarCraft Sleep

KakaoTalk

.5

.5

.2

.3 .5
.3

.7.3

.7 P =


.5 .5 0 0
.2 0 .5 .3
0 .3 .7 0
.7 0 0 .3



P is a stochastic matrix = rows sum to 1.



One-step transitions

Time: t = 0, 1, 2, . . . .
Let Xt denote the state at time t.
Xt is a random variable.

For states k and j, Pr (X1 = j | X0 = k) = P(k, j).
In general, for t ≥ 1, given:

in state k0 at time 0, in k1 at time 1, . . . , in kt−1 at time t − 1,
what’s the probability of being in state j at time t?

Pr (Xt = j | X0 = k0,X1 = k1, . . . ,Xt−1 = kt−1)

= Pr (Xt = j | Xt−1 = kt−1)

= P(kt−1, j).

Process is memoryless –
only current state matters, previous states do not matter.

Known as Markov property, hence the term Markov chain.
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2-step transitions

What’s probability Listen at time 2 given Kakao at time 0?
Try all possibilities for state at time 1.

Pr (X2 = Listen | X0 = Kakao)

= Pr (X2 = Listen | X1 = Listen)× Pr (X1 = Listen | X0 = Kakao)

+Pr (X2 = Listen | X1 = Kakao)× Pr (X1 = Kakao | X0 = Kakao)

+Pr (X2 = Listen | X1 = StarCraft)× Pr (X1 = StarCraft | X0 = Kakao)

+Pr (X2 = Listen | X1 = Sleep)× Pr (X1 = Sleep | X0 = Kakao)

= (.5)(.2) + 0 + 0 + (.7)(.3) = .31

P =


.5 .5 0 0
.2 0 .5 .3
0 .3 .7 0
.7 0 0 .3

 P2 =


.35 .25 .25 .15
.31 .25 .35 .09
.06 .21 .64 .09
.56 .35 0 .09


States: 1=Listen, 2=Kakao, 3=StarCraft, 4=Sleep.
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k-step transitions

2-step transition probabilities: use P2.
In general, for states i and j:

Pr (Xt+2 = j | Xt = i)

=
N∑

k=1

Pr (Xt+2 = j | Xt+1 = k)× Pr (Xt+1 = k | Xt = i)

=
∑

k

P(k, j)P(i, k) =
∑

k

P(i, k)P(k, j) = P2(i, j)

`-step transition probabilities: use P`.
For states i and j and integer ` ≥ 1,

Pr (Xt+` = j | Xt = i) = P`(i, j),
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Random Initial State

Suppose the state at time 0 is not fixed
but is chosen from a probability distribution µ0.

Notation: X0 ∼ µ0.

What is the distribution for X1?

For state j,

Pr (X1 = j) =
N∑

i=1

Pr (X0 = i)× Pr (X1 = j | X0 = i)

=
∑

i

µ0(i)P(i, j) = (µ0P)(j)

So X1 ∼ µ1 where µ1 = µ0P.

And Xt ∼ µt where µt = µ0Pt.
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Back to CS 500 example: big t?

Let’s look again at our CS 500 example:

P =


.5 .5 0 0
.2 0 .5 .3
0 .3 .7 0
.7 0 0 .3



P2 =


.35 .25 .25 .15
.31 .25 .35 .09
.06 .21 .64 .09
.56 .35 0 .09



P10 =


.247770 .244781 .402267 .105181
.245167 .244349 .405688 .104796
.239532 .243413 .413093 .103963
.251635 .245423 .397189 .105754



P20 =


.244190 .244187 .406971 .104652
.244187 .244186 .406975 .104651
.244181 .244185 .406984 .104650
.244195 .244188 .406966 .104652


Columns are converging to

π = [ .244186, .244186, .406977, .104651].
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Limiting Distribution

For big t,

Pt ≈


.244186 .244186 .406977 .104651
.244186 .244186 .406977 .104651
.244186 .244186 .406977 .104651
.244186 .244186 .406977 .104651



Regardless of where it starts X0, for big t:

Pr (Xt = 1) = .244186

Pr (Xt = 2) = .244186

Pr (Xt = 3) = .406977

Pr (Xt = 4) = .104651

Let π = [ .244186, .244186, .406977, .104651].
In other words, for big t, Xt ∼ π.

π is called a stationary distribution.
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Limiting Distribution

Let π = [ .244186, .244186, .406977, .104651].
π is called a stationary distribution.

Once we reach π we stay in π: if Xt ∼ π then Xt+1 ∼ π,
in other words, πP = π.

Any distribution π where πP = π is called a stationary distribution
of the Markov chain.
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Limiting Distribution

Let π = [ .244186, .244186, .406977, .104651].
π is called a stationary distribution.

Once we reach π we stay in π: if Xt ∼ π then Xt+1 ∼ π,
in other words, πP = π.
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Stationary Distributions

Key questions:
When is there a stationary distribution?
If there is at least one, is it unique or more than one?
Assuming there’s a unique stationary distribution:

Do we always reach it?
What is it?
Mixing time = Time to reach unique stationary distribution

Algorithmic Goal:
If we have a distribution π that we want to sample from, can
we design a Markov chain that has:

Unique stationary distribution π,
From every X0 we always reach π,
Fast mixing time.
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Irreducibility

Want a unique stationary distribution π and that
get to it from every starting state X0.

But if multiple strongly connected components (SCCs) then can’t
go from one to the other:

1
1
2

3 4

6

5

Starting at 1 gets to different distribution than starting at 5.

State i communicates with state j if starting at i can reach j:

there exists t, Pt(i, j) > 0.

Markov chain is irreducible if all pairs of states communicate..
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Periodicity

Example of bipartite Markov chain:

1
.4

.4

1

2

3

4
.7

4
.5

.3.5

.3

.6

.3

Starting at 1 gets to different distribution than starting at 3.

Need that no periodicity.
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Aperiodic

1
1

1

.3

.7

2

3
4

.7

.3

Return times for state i are times Ri = {t : Pt(i, i) > 0}.
Above example: R1 = {3, 5, 6, 8, 9, . . . }.

Let r = gcd(Ri) be the period for state i.

If P is irreducible then all states have the same period.
If r = 2 then the Markov chain is bipartite.
A Markov chain is aperiodic if r = 1.
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Ergodic: Unique Stationary Distribution

Ergodic = Irreducible and aperiodic.

Fundamental Theorem for Markov Chains:
Ergodic Markov chain has a unique stationary distribution π.
And for all initial X0 ∼ µ0 then:

lim
t→∞

µt = π.

In other words, for big enough t, all rows of Pt are π.

How big does t need to be?

What is π?
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Proof idea: Ergodic MC has Unique Stationary Distribution

What is a π?

Fix a state i and set X0 = i.
Let T be the first time we visit state i again.
T is a random variable.
For every state j,

let ρ(j) = expected number of visits to j up to time T.
(Note, ρ(i) = 1.)

Let π(j) = ρ(j)/Z where Z =
∑

k ρ(k).
Can verify that this π is a stationary distribution.

Why is it unique and we always reach it?
Make 2 chains (Xt) and (Yt):

X0 is arbitrary, and
Y0 is chosen from π so that Yt ∼ π for all t.

Using irreducibility, can “couple” the transitions of these chains:
for big t we have Xt = Yt and thus Xt ∼ π.
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Determining π: Symmetric Markov Chain

Symmetric if for all pairs i, j: P(i, j) = P(j, i).
Then π is uniformly distributed over all of the states {1, . . . ,N}:

π(j) =
1
N

for all states j.

Proof: We’ll verify that πP = π for this π.
Need to check that for all states j: (πP)(j) = π(j).

(πP)(j) =
N∑

i=1

π(i)P(i, j)

=
1
N

N∑
i=1

P(i, j)

=
1
N

N∑
i=1

P(j, i) since P is symmetric

=
1
N

since rows of P always sum to 1

= π(j)
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Determining π: Reversible Markov Chain

Reversible with respect to π if for all pairs i, j:

π(i)P(i, j) = π(j)P(j, i).

If can find such a π then it is the stationary distribution.

Proof: Similar to the symmetric case.
Need to check that for all states j: (πP)(j) = π(j).

(πP)(j) =
N∑

i=1

π(i)P(i, j)

=
N∑

i=1

π(j)P(j, i) since P is reversible

= π(j)
N∑

i=1

P(j, i)

= π(j)
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Some Examples

Random walk on a d-regular, connected undirected graph G:
What is π?

Symmetric: for edge (i, j), P(i, j) = P(j, i) = 1/d.
So π is uniform: π(i) = 1/n.

Random walk on a general connected undirected graph G:
What is π?

Consider π(i) = d(i)/Z where
d(i) = degree of vertex i and
Z =

∑
j∈V d(j). (Note, Z = 2m = 2|E|.)

Check it’s reversible: π(i)P(i, j) = d(i)
Z

1
d(i) = 1

Z = π(j)P(j, i).

What if G is a directed graph?

Then it may not be reversible, and if it’s not reversible:
then usually we can’t figure out the stationary distribution
since typically N is HUGE.
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PageRank

PageRank is an algorithm devised by Brin and Page 1998:
determine the “importance” of webpages.

Webgraph:
V = webpages
E = directed edges for hyperlinks

Notation:
For page x ∈ V, let:

Out(x) = {y : x→ y ∈ E} = outgoing edges from x

In(x) = {w : w→ x ∈ E} = incoming edges to x

Let π(x) = “rank” of page x.
We are trying to define π(x) in a sensible way.
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First Ranking Idea

First idea for ranking pages: like academic papers
use citation counts

Here, citation = link to a page.

So set π(x) = |In(x)| = number of links to x.



Refining the Ranking Idea

What if:
Georgia Tech’s webpage has 500 links, one is to Eric’s page.
KAIST’s webpage has only 5 links, one is to Otfried’s page.

Which link is more valuable?

Academic papers: If a paper cites 50 other papers, then each
reference gets 1/50 of a citation.

Webpages: If a page y has |Out(y)| outgoing links, then:
each linked page gets 1/|Out(y)|.

New solution:
π(x) =

∑
y∈In(x)

1
|Out(y)|

.
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Further Refining the Ranking Idea

Previous:
π(x) =

∑
y∈In(x)

1
|Out(y)|

.

But if CNN has a link to a page that’s more important than if
KAIST CS has a link to it.

Solution: define π(x) recursively.
Page y has importance π(y).
A link from y gets π(y)/|Out(y)| of a citation.

π(x) =
∑

y∈In(x)

π(y)

|Out(y)|
.
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Random Walk

Importance of page x:

π(x) =
∑

y∈In(x)

π(y)

|Out(y)|
.

Recursive definition of π, how do we find it?

Look at the random walk on the webgraph G = (V,E).
From a page y ∈ V, choose a random link and follow it.
This is a Markov chain.
For y→ x ∈ E then:

P(y, x) =
1

|Out(y)|

What is the stationary distribution of this Markov chain?
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Random Walk

Random walk on the webgraph G = (V,E).
For y→ x ∈ E then:

P(y, x) =
1

|Out(y)|

What is the stationary distribution of this Markov chain?

Need to find π where π = πP.
Thus,

π(x) =
∑
y∈V

π(y)P(y, x) =
∑

y∈In(x)

π(y)

|Out(y)|
.

This is identical to the definition of the importance vector π.

Summary: the stationary distribution of the random walk on the
webgraph gives the importance π(x) of a page x.
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Random Walk on the Webgraph

Random walk on the webgraph G = (V,E).

Is π the only stationary distribution?
In other words, is the Markov chain ergodic?

Need that G is strongly connected – it probably is not.
And some pages have no outgoing links...

then hit the “random” button!

Solution to make it ergodic:
Introduce “damping factor” α where 0 < α ≤ 1.

(in practice apparently use α ≈ .85)

From page y,
with prob. α follow a random outgoing link from page y.
with prob. 1− α go to a completely random page

(uniformly chosen from all pages V).
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Random Surfer

Let N = |V| denote number of webpages.
Transition matrix of new Random Surfer chain:

P(y, x) =

{
1−α

N if y→ x 6∈ E
1−α

N + α
|Out(y)| if y→ x ∈ E

This new Random Surfer Markov chain is ergodic.
Thus, unique stationary distribution is the desired π.

How to find π?

Take last week’s π, and compute πPt for big t.
What’s a big enough t?
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Mixing Time

How fast does an ergodic MC reach its unique stationary π?

Need to measure distance from π, use total variation distance.
For distributions µ and ν on set Ω:

dTV(µ, ν) =
1
2

∑
x∈Ω

|µ(x)− ν(x)|.

Example: Ω = {1, 2, 3, 4}.
µ is uniform: µ(1) = µ(2) = µ(3) = µ(4) = .25.
And ν has: ν(1) = .5, ν(2) = .1, ν(3) = .15, ν(4) = .25.

dTV(µ, ν) =
1
2

(.25 + .15 + .1 + 0) = .25
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Mixing Time

Consider ergodic MC with states Ω, transition matrix P, and
unique stationary distribution π.
For state x ∈ Ω, time to mix from x:

T(x) = min{t : dTV(Pt(x, ·), π) ≤ 1/4.

Then, mixing time Tmix = maxx T(x).
Summarizing in words:

mixing time is time to get within distance ≤ 1/4 of π from
the worst initial state X0.

Choice of constant 1/4 is somewhat arbitrary.
Can get within distance ≤ ε in time O(Tmix log(1/ε)).
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Mixing Time of Random Surfer

Coupling proof:
Consider 2 copies of the Random Surfer chain (Xt) and (Yt).

Choose Y0 from π. Thus, Yt ∼ π for all t.
And X0 is arbitrary.

If Xt−1 = Yt−1 then they choose the same transition at time t.
If Xt−1 6= Yt−1 then with prob. 1− α choose the same random

page z for both chains.

Therefore,
Pr (Xt 6= Yt) ≤ αt.

Setting: t ≥ −2/ log(α) we have Pr (Xt 6= Yt) ≤ 1/4.
Therefore, mixing time:

Tmix ≤
−2

logα
≈ 8.5 for α = .85.
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Setting: t ≥ −2/ log(α) we have Pr (Xt 6= Yt) ≤ 1/4.
Therefore, mixing time:

Tmix ≤
−2

logα
≈ 8.5 for α = .85.
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Example Chain: Random Matching

Undirected graph:

Matching = subset of vertex disjoint edges.

Let Ω = collection of all matchings of G (of all sizes).

Can we generate a matching uniformly at random from Ω?
in time polynomial in n = |V|?
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Markov Chain for Matchings

Consider an undirected graph G = (V,E).

From a matching Xt the transition Xt → Xt+1
is defined as follows:

1 Choose an edge e = (v,w) uniformly at random from E.
2 If e ∈ Xt then set Xt+1 = Xt \ {e}.
3 If v and w are unmatched in Xt then set Xt+1 = Xt

⋃
{e}.

4 Otherwise, set Xt+1 = Xt.

Symmetric and ergodic and thus π is uniform over Ω.

How fast does it reach π?

Next class: we’ll see that it’s close after poly(n) steps for every G.
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