Homework - CS492 - due April 11, 2008

Problem 1. Give examples of free \mathbb{Z}_2 -spaces of index *n* that are not (n-1)-connected.

Problem 2. Give an example of a free \mathbb{Z}_2 -space (X, α) with $\operatorname{ind}_{\mathbb{Z}_2}(X, \alpha) = \infty$.

Problem 3. Let

$$V_{n,2} = \{ (v_1, v_2) \in (S^{n-1})^2 : v_1 \cdot v_2 = 0 \} \subset \mathbb{R}^{2n}$$

be the Steifel manifold of pairs of orthogonal unit vectors, $n \ge 1$ (with the topology of a subspace of \mathbb{R}^{2n}). Let α be the \mathbb{Z}_2 -action given by $(v_1, v_2) \mapsto (-v_1, -v_2)$.

- *a*. Show that $\operatorname{ind}_{\mathbb{Z}_2}(V_{n,2}, \alpha) \leq n 1$.
- *b*. Describe a \mathbb{Z}_2 -map $S^1 \to V_{2,2}$, proving that $\operatorname{ind}_{\mathbb{Z}_2}(V_{2,2}, \alpha) = 1$.
- *c*. Describe a \mathbb{Z}_2 -map $S^1 \to V_{3,2}$.
- *d*. Describe a \mathbb{Z}_2 -map $S^3 \to V_{4,2}$, proving that $\operatorname{ind}_{\mathbb{Z}_2}(V_{4,2}, \alpha) = 3$.

Problem 4. Let (X, α) be a free \mathbb{Z}_2 -space, and let $A, B \subset X$ be closed invariant sets (that is, $\alpha(A) = A$ and $\alpha(B) = B$) with $A \cup B = X$. Show that

$$\operatorname{ind}_{\mathbb{Z}_2}(X, \alpha) \leq \operatorname{ind}_{\mathbb{Z}_2}(A, \alpha) + \operatorname{ind}_{\mathbb{Z}_2}(B, \alpha) + 1$$