
Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 7: Virutal Machine, Part I slide 3

Motivation

class Main {

static int x;

function void main() {

// Inputs and multiplies two numbers

var int a, b, x;

let a = Keyboard.readInt(“Enter a number”);

let b = Keyboard.readInt(“Enter a number”);

let x = mult(a,b);

return;

}

}

// Multiplies two numbers.

function int mult(int x, int y) {

var int result, j;
let result = 0; let j = y;

while ~(j = 0) {

let result = result + x;

let j = j – 1;

}

return result;

}

}

class Main {

static int x;

function void main() {

// Inputs and multiplies two numbers

var int a, b, x;

let a = Keyboard.readInt(“Enter a number”);

let b = Keyboard.readInt(“Enter a number”);

let x = mult(a,b);

return;

}

}

// Multiplies two numbers.

function int mult(int x, int y) {

var int result, j;
let result = 0; let j = y;

while ~(j = 0) {

let result = result + x;

let j = j – 1;

}

return result;

}

}

Jack code (example)

Our ultimate goal:

Translate high-level
programs into
executable code.

Compiler

0000000000010000

1110111111001000

0000000000010001

1110101010001000

0000000000010000

1111110000010000

0000000000000000

1111010011010000

0000000000010010

1110001100000001

0000000000010000

1111110000010000

0000000000010001

0000000000010000

1110111111001000

0000000000010001

1110101010001000

0000000000010000

1111110000010000

0000000000000000

1111010011010000

0000000000010010

1110001100000001

0000000000010000

1111110000010000

0000000000010001

...

0000000000010000

1110111111001000

0000000000010001

1110101010001000

0000000000010000

1111110000010000

0000000000000000

1111010011010000

0000000000010010

1110001100000001

0000000000010000

1111110000010000

0000000000010001

0000000000010000

1110111111001000

0000000000010001

1110101010001000

0000000000010000

1111110000010000

0000000000000000

1111010011010000

0000000000010010

1110001100000001

0000000000010000

1111110000010000

0000000000010001

...

Hack code

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 7: Virutal Machine, Part I slide 4

Compilation models

. . .

requires n m translators

hardware
platform 2

hardware
platform 1

hardware
platform m

. . .

language 1 language 2 language n

direct compilation:

.

. . .

hardware
platform 2

hardware
platform 1

hardware
platform m

. . .

language 1 language 2 language n

intermediate language

requires n + m translators

2-tier compilation:

Two-tier compilation:

� First compilation stage: depends only on the details of the source language

� Second compilation stage: depends only on the details of the target language.

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 7: Virutal Machine, Part I slide 5

The big picture

. . .
RISC

machine

Intermediate code

other digital platforms, each equipped
with its own VM implementation

RISC
machine
language

Hack
computer

Hack
machine
language

CISC
machine
language

CISC
machine

. . .
written in

a high-level
language

Any
computer

. . .

VM
implementation

over CISC
platforms

VM imp.
over RISC
platforms

VM imp.
over the Hack

platform
VM

emulator

Some Other
language

Jack
language

Some
compiler Some Other

compiler

Jack
compiler

. . .Some
language

. . . The intermediate code:

� The interface between
the 2 compilation stages

� Must be sufficiently
general to support many
<high-level language,
machine-language>
pairs

� Can be modeled as the
language of an abstract
virtual machine (VM)

� Can be implemented in
several different ways.

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 7: Virutal Machine, Part I slide 10

Our VM model is stack-oriented

� All operations are done on a stack

� Data is saved in several separate memory segments

� All the memory segments behave the same

� One of the memory segments m is called static, and we will use it
(as an arbitrary example) in the following examples:

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 7: Virutal Machine, Part I slide 11

Data types

Our VM model features a single 16-bit data type that can be used as:

� an integer value (16-bit 2’s complement: -32768, ... , 32767)

� a Boolean value (0 and -1, standing for true and false)

� a pointer (memory address)

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 7: Virutal Machine, Part I slide 12

Memory access operations

The stack:

� A classical LIFO data structure

� Elegant and powerful

� Several hardware / software implementation options.

pop

static 0

(before)

push

static 2

(after)

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 7: Virutal Machine, Part I slide 13

Evaluation of arithmetic expressions

// z=(2-x)-(y+5)
push 2
push x
sub
push y
push 5
add
sub
pop z

// z=(2-x)-(y+5)
push 2
push x
sub
push y
push 5
add
sub
pop z

VM code (example)

(suppose that
x refers to static 0,
y refers to static 1, and
z refers to static 2)

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 7: Virutal Machine, Part I slide 14

Evaluation of Boolean expressions

// (x<7) or (y=8)
push x
push 7
lt
push y
push 8
eq
or

// (x<7) or (y=8)
push x
push 7
lt
push y
push 8
eq
or

VM code (example)

(suppose that
x refers to static 0, and
y refers to static 1)

(actually true and false
are stored as 0 and -1,
respectively)

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 7: Virutal Machine, Part I slide 15

Arithmetic and Boolean commands in the VM language (wrap-up)

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 7: Virutal Machine, Part I slide 16

A VM program is designed to provide an interim abstraction of a program
written in some high-level language

Modern OO high-level languages normally feature the following variable kinds:

Class level:

� Static variables (class-level variables)

� Private variables (aka “object variables” / “fields” / “properties”)

Method level:

� Local variables

� Argument variables

When translated into the VM language,

The static, private, local and argument variables are mapped by the compiler on
the four memory segments static, this, local, argument

In addition, there are four additional memory segments, whose role will be
presented later: that, constant, pointer, temp.

The VM’s Memory segments

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 7: Virutal Machine, Part I slide 17

Memory segments and memory access commands

Memory access VM commands:

� pop memorySegment index

� push memorySegment index

Where memorySegment is static, this, local, argument, that, constant, pointer, or temp

And index is a non-negative integer

Memory access VM commands:

� pop memorySegment index

� push memorySegment index

Where memorySegment is static, this, local, argument, that, constant, pointer, or temp

And index is a non-negative integer

Notes:

(In all our code examples thus far, memorySegment was static)

The different roles of the eight memory segments will become relevant when we’ll talk
about the compiler

At the VM abstraction level, all memory segments are treated the same way.

The VM abstraction includes 8 separate memory segments named:
static, this, local, argument, that, constant, pointer, temp

As far as VM programming commands go, all memory segments look and behave the same

To access a particular segment entry, use the following generic syntax:

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 7: Virutal Machine, Part I slide 18

VM programming

VM programs are normally written by compilers, not by humans

However, compilers are written by humans ...

In order to write or optimize a compiler, it helps to first understand the spirit of
the compiler’s target language – the VM language

So, we’ll now see an example of a VM program

The example includes three new VM commands:

� function functionSymbol // function declaration

� label labelSymbol // label declaration

� if-goto labelSymbol // pop x

// if x=true, jump to execute the command after labelSymbol
// else proceed to execute the next command in the program

For example, to effect if (x > n) goto loop, we can use the following VM commands:

push x

push n

gt

if-goto loop // Note that x, n, and the truth value were removed from the stack.

� function functionSymbol // function declaration

� label labelSymbol // label declaration

� if-goto labelSymbol // pop x

// if x=true, jump to execute the command after labelSymbol
// else proceed to execute the next command in the program

For example, to effect if (x > n) goto loop, we can use the following VM commands:

push x

push n

gt

if-goto loop // Note that x, n, and the truth value were removed from the stack.

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 7: Virutal Machine, Part I slide 19

VM programming (example)

function mult (x,y) {

int result, j;

result = 0;

j = y;

while ~(j = 0) {

result = result + x;

j = j - 1;

}

return result;

}

function mult (x,y) {

int result, j;

result = 0;

j = y;

while ~(j = 0) {

result = result + x;

j = j - 1;

}

return result;

}

High-level code

function mult(x,y)

push 0

pop result

push y

pop j

label loop

push j

push 0

eq

if-goto end

push result

push x

add

pop result

push j

push 1

sub

pop j

goto loop

label end

push result

return

function mult(x,y)

push 0

pop result

push y

pop j

label loop

push j

push 0

eq

if-goto end

push result

push x

add

pop result

push j

push 1

sub

pop j

goto loop

label end

push result

return

VM code (first approx.)

function mult 2

push constant 0

pop local 0

push argument 1

pop local 1

label loop

push local 1

push constant 0

eq

if-goto end

push local 0

push argument 0

add

pop local 0

push local 1

push constant 1

sub

pop local 1

goto loop

label end

push local 0

return

function mult 2

push constant 0

pop local 0

push argument 1

pop local 1

label loop

push local 1

push constant 0

eq

if-goto end

push local 0

push argument 0

add

pop local 0

push local 1

push constant 1

sub

pop local 1

goto loop

label end

push local 0

return

VM code

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 7: Virutal Machine, Part I slide 20

VM programming: multiple functions

Compilation:

� A Jack application is a set of 1 or more class files (just like .java files).

� When we apply the Jack compiler to these files, the compiler creates a set of 1 or

more .vm files (just like .class files). Each method in the Jack app is translated

into a VM function written in the VM language

� Thus, a VM file consists of one or more VM functions.

Execution:

� At any given point of time, only one VM function is executing (the “current

function”), while 0 or more functions are waiting for it to terminate (the functions

up the “calling hierarchy”)

� For example, a main function starts running; at some point we may reach the

command call factorial, at which point the factorial function starts running;

then we may reach the command call mult, at which point the mult function starts

running, while both main and factorial are waiting for it to terminate

The stack: a global data structure, used to save and restore the resources (memory

segments) of all the VM functions up the calling hierarchy (e.g. main and factorial).

The tip of this stack if the working stack of the current function (e.g. mult).

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 8: Virtual Machine, Part II slide 9

Program flow commands in the VM language

How to translate these three abstractions into assembly?

� Simple: label declarations and goto directives can be
effected directly by assembly commands

� More to the point: given any one of these three VM
commands, the VM Translator must emit one or more
assembly commands that effects the same semantics
on the Hack platfrom

� How to do it? see project 8.

label c // label declaration

goto c // unconditional jump to the
// VM command following the label c

if-goto c // pops the topmost stack element;
// if it’s not zero, jumps to the
// VM command following the label c

label c // label declaration

goto c // unconditional jump to the
// VM command following the label c

if-goto c // pops the topmost stack element;
// if it’s not zero, jumps to the
// VM command following the label c

In the VM language, the program flow abstraction is

delivered using three commands:

VM code example:

function mult 1

push constant 0

pop local 0

label loop

push argument 0

push constant 0

eq

if-goto end

push argument 0

push 1

sub

pop argument 0

push argument 1

push local 0

add

pop local 0

goto loop

label end

push local 0

return

function mult 1

push constant 0

pop local 0

label loop

push argument 0

push constant 0

eq

if-goto end

push argument 0

push 1

sub

pop argument 0

push argument 1

push local 0

add

pop local 0

goto loop

label end

push local 0

return

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 8: Virtual Machine, Part II slide 11

Subroutines

Subroutines = a major programming artifact

� Basic idea: the given language can be extended at will by user-defined
commands (aka subroutines / functions / methods ...)

� Important: the language’s primitive commands and the user-defined commands
have the same look-and-feel

� This transparent extensibility is the most important abstraction delivered by
high-level programming languages

� The challenge: implement this abstraction, i.e. allow the program control to flow
effortlessly between one subroutine to the other

“A well-designed system consists of a collection of black box modules,
each executing its effect like magic”
(Steven Pinker, How The Mind Works)

// Compute x = (-b + sqrt(b^2 -4*a*c)) / 2*a

if (~(a = 0))

x = (-b + sqrt(b * b – 4 * a * c)) / (2 * a)

else

x = - c / b

// Compute x = (-b + sqrt(b^2 -4*a*c)) / 2*a

if (~(a = 0))

x = (-b + sqrt(b * b – 4 * a * c)) / (2 * a)

else

x = - c / b

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 8: Virtual Machine, Part II slide 12

Subroutines in the VM language

The invocation of the VM’s primitive
commands and subroutines
follow exactly the same rules:

�The caller pushes the necessary
argument(s) and calls the command /
function for its effect

�The called command / function is
responsible for removing the argument(s)
from the stack, and for popping onto
the stack the result of its execution.

function mult 1

push constant 0

pop local 0 // result (local 0) = 0

label loop

push argument 0

push constant 0

eq

if-goto end // if arg0 == 0, jump to end

push argument 0

push 1

sub

pop argument 0 // arg0--

push argument 1

push local 0

add

pop local 0 // result += arg1

goto loop

label end

push local 0 // push result

return

function mult 1

push constant 0

pop local 0 // result (local 0) = 0

label loop

push argument 0

push constant 0

eq

if-goto end // if arg0 == 0, jump to end

push argument 0

push 1

sub

pop argument 0 // arg0--

push argument 1

push local 0

add

pop local 0 // result += arg1

goto loop

label end

push local 0 // push result

return

Called code, aka “callee” (example)

...

// computes (7 + 2) * 3 - 5

push constant 7

push constant 2

add

push constant 3

call mult

push constant 5

sub

...

...

// computes (7 + 2) * 3 - 5

push constant 7

push constant 2

add

push constant 3

call mult

push constant 5

sub

...

Calling code (example)

VM subroutine
call-and-return
commands

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 8: Virtual Machine, Part II slide 13

Function commands in the VM language

Q: Why this particular syntax?

A: Because it simplifies the VM implementation (later).

function g nVars // here starts a function called g,
// which has nVars local variables

call g nArgs // invoke function g for its effect;
// nArgs arguments have already been pushed onto the stack

return // terminate execution and return control to the caller

function g nVars // here starts a function called g,
// which has nVars local variables

call g nArgs // invoke function g for its effect;
// nArgs arguments have already been pushed onto the stack

return // terminate execution and return control to the caller

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 8: Virtual Machine, Part II slide 14

Function call-and-return conventions

function mult 1

push constant 0

pop local 0 // result (local 0) = 0

label loop

... // rest of code ommitted

label end

push local 0 // push result

return

function mult 1

push constant 0

pop local 0 // result (local 0) = 0

label loop

... // rest of code ommitted

label end

push local 0 // push result

return

called function aka “callee” (example)

function demo 3

...

push constant 7

push constant 2

add

push constant 3

call mult

...

function demo 3

...

push constant 7

push constant 2

add

push constant 3

call mult

...

Calling function

Call-and-return programming convention

� The caller must push the necessary argument(s), call the callee, and wait for it to return

� Before the callee terminates (returns), it must push a return value

� At the point of return, the callee’s resources are recycled, the caller’s state is re-instated,
execution continues from the command just after the call

� Caller’s net effect: the arguments were replaced by the return value
(just like with primitive commands)

Behind the scene

� Recycling and re-instating subroutine resources and states is a major headache

� Some agent (either the VM or the compiler) should manage it behind the scene “like magic”

� In our implementation, the magic is VM / stack-based, and is considered a great CS gem.

Although not obvious in this
example, every VM function
has a private set of 5 memory
segments (local, argument,

this, that, pointer)

These resources exist as long
as the function is running.

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 8: Virtual Machine, Part II slide 15

The function-call-and-return protocol

The caller’s view:

� When I start executing, my argument segment has been initialized with actual
argument values passed by the caller

� My local variables segment has been allocated and initialized to zero

� The static segment that I see has been set to the static segment of the VM file to
which I belong, and the working stack that I see is empty

� Before exiting, I must push a value onto the stack and then use the command return.

� When I start executing, my argument segment has been initialized with actual
argument values passed by the caller

� My local variables segment has been allocated and initialized to zero

� The static segment that I see has been set to the static segment of the VM file to
which I belong, and the working stack that I see is empty

� Before exiting, I must push a value onto the stack and then use the command return.

� Before calling a function g, I must push onto the stack as many
arguments as needed by g

� Next, I invoke the function using the command call g nArgs

� After g returns:

� The arguments that I pushed before the call have disappeared
from the stack, and a return value (that always exists)
appears at the top of the stack

� All my memory segments (local, argument, this, that,

pointer) are the same as before the call.

� Before calling a function g, I must push onto the stack as many
arguments as needed by g

� Next, I invoke the function using the command call g nArgs

� After g returns:

� The arguments that I pushed before the call have disappeared
from the stack, and a return value (that always exists)
appears at the top of the stack

� All my memory segments (local, argument, this, that,

pointer) are the same as before the call.

The callee’s (g ‘s) view:

Blue = VM function
writer’s responsibility

Black = black box magic,
delivered by the
VM implementation

Thus, the VM implementation
writer must worry about
the “black operations” only.

function g nVars

call g nArgs

return

function g nVars

call g nArgs

return

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 8: Virtual Machine, Part II slide 16

When function f calls function g, the VM implementation must:

� Save the return address within f ‘s code:
the address of the command just after the call

� Save the virtual segments of f

� Allocate, and initialize to 0, as many local variables as needed by g

� Set the local and argument segment pointers of g

� Transfer control to g.

When g terminates and control should return to f, the VM implementation must:

� Clear g ’s arguments and other junk from the stack

� Restore the virtual segments of f

� Transfer control back to f
(jump to the saved return address).

Q: How should we make all this work “like magic”?

A: We’ll use the stack cleverly.

The function-call-and-return protocol: the VM implementation view

function g nVars

call g nArgs

return

function g nVars

call g nArgs

return

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 8: Virtual Machine, Part II slide 24

Perspective
Benefits of the VM approach

� Code transportability: compiling for
different platforms requires replacing only
the VM implementation

� Language inter-operability: code of multiple
languages can be shared using the same VM

� Common software libraries

� Code mobility: Internet

� Some virtues of the modularity implied by
the VM approach to program translation:

� Improvements in the VM
implementation are shared by all
compilers above it

� Every new digital device with a VM
implementation gains immediate access
to an existing software base

� New programming languages can be
implemented easily using simple
compilers

. . .

VM language

RISC
machine
language

Hack
CISC

machine
language

. . .
written in

a high-level
language

. . .

VM
implementation

over CISC
platforms

VM imp.
over RISC
platforms

TranslatorVM
emulator

Some Other
language Jack

Some
compiler Some Other

compiler
compiler

. . .Some
language

. . .

Benefits of managed code:

� Security

� Array bounds, index checking, …

� Add-on code

� Etc.

VM Cons

� Performance.

