
Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 7: Virutal Machine, Part I slide 25

VM implementation on the Hack platform

Basic idea: the mapping of the stack and the
global segments on the RAM is easy (fixed);
the mapping of the function-level segments is
dynamic, using pointers

The stack: mapped on RAM[256 ... 2047];
The stack pointer is kept in RAM address SP

static: mapped on RAM[16 ... 255];
each segment reference static i appearing in a
VM file named f is compiled to the assembly
language symbol f.i (recall that the assembler further
maps such symbols to the RAM, from address 16 onward)

local,argument,this,that: these method-level
segments are mapped somewhere from address
2048 onward, in an area called “heap”. The base
addresses of these segments are kept in RAM
addresses LCL, ARG, THIS, and THAT. Access to
the i-th entry of any of these segments is
implemented by accessing RAM[segmentBase + i]

constant: a truly a virtual segment:
access to constant i is implemented by
supplying the constant i.

pointer: discussed later.

Statics

3

12

. . .

4

5

14

15

0

1

13

2

THIS

THAT

SP

LCL

ARG

TEMP

255

. . .
16

General
purpose

2047

. . .
256

2048

Stack

Heap. . .

Host
RAM

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 7: Virutal Machine, Part I slide 26

VM implementation on the Hack platform

Statics

3

12

. . .

4

5

14

15

0

1

13

2

THIS

THAT

SP

LCL

ARG

TEMP

255

. . .
16

General
purpose

2047

. . .
256

2048

Stack

Heap. . .

Host
RAM

Practice exercises

Now that we know how the memory segments are
mapped on the host RAM, we can write Hack
commands that realize the various VM commands.
for example, let us write the Hack code that
implements the following VM commands:

� push constant 1

� pop static 7 (suppose it appears in a VM file named f)

� push constant 5

� add

� pop local 2

� eq

Tips:

1. The implementation of any one of these VM
commands requires several Hack assembly
commands involving pointer arithmetic
(using commands like A=M)

2. If you run out of registers (you have only two ...),
you may use R13, R14, and R15.

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 8: Virtual Machine, Part II slide 14

Function call-and-return conventions

function mult 1

push constant 0

pop local 0 // result (local 0) = 0

label loop

... // rest of code ommitted

label end

push local 0 // push result

return

function mult 1

push constant 0

pop local 0 // result (local 0) = 0

label loop

... // rest of code ommitted

label end

push local 0 // push result

return

called function aka “callee” (example)

function demo 3

...

push constant 7

push constant 2

add

push constant 3

call mult

...

function demo 3

...

push constant 7

push constant 2

add

push constant 3

call mult

...

Calling function

Call-and-return programming convention

� The caller must push the necessary argument(s), call the callee, and wait for it to return

� Before the callee terminates (returns), it must push a return value

� At the point of return, the callee’s resources are recycled, the caller’s state is re-instated,
execution continues from the command just after the call

� Caller’s net effect: the arguments were replaced by the return value
(just like with primitive commands)

Behind the scene

� Recycling and re-instating subroutine resources and states is a major headache

� Some agent (either the VM or the compiler) should manage it behind the scene “like magic”

� In our implementation, the magic is VM / stack-based, and is considered a great CS gem.

Although not obvious in this
example, every VM function
has a private set of 5 memory
segments (local, argument,

this, that, pointer)

These resources exist as long
as the function is running.

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 8: Virtual Machine, Part II slide 15

The function-call-and-return protocol

The caller’s view:

� When I start executing, my argument segment has been initialized with actual
argument values passed by the caller

� My local variables segment has been allocated and initialized to zero

� The static segment that I see has been set to the static segment of the VM file to
which I belong, and the working stack that I see is empty

� Before exiting, I must push a value onto the stack and then use the command return.

� When I start executing, my argument segment has been initialized with actual
argument values passed by the caller

� My local variables segment has been allocated and initialized to zero

� The static segment that I see has been set to the static segment of the VM file to
which I belong, and the working stack that I see is empty

� Before exiting, I must push a value onto the stack and then use the command return.

� Before calling a function g, I must push onto the stack as many
arguments as needed by g

� Next, I invoke the function using the command call g nArgs

� After g returns:

� The arguments that I pushed before the call have disappeared
from the stack, and a return value (that always exists)
appears at the top of the stack

� All my memory segments (local, argument, this, that,

pointer) are the same as before the call.

� Before calling a function g, I must push onto the stack as many
arguments as needed by g

� Next, I invoke the function using the command call g nArgs

� After g returns:

� The arguments that I pushed before the call have disappeared
from the stack, and a return value (that always exists)
appears at the top of the stack

� All my memory segments (local, argument, this, that,

pointer) are the same as before the call.

The callee’s (g ‘s) view:

Blue = VM function
writer’s responsibility

Black = black box magic,
delivered by the
VM implementation

Thus, the VM implementation
writer must worry about
the “black operations” only.

function g nVars

call g nArgs

return

function g nVars

call g nArgs

return

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 8: Virtual Machine, Part II slide 16

When function f calls function g, the VM implementation must:

� Save the return address within f ‘s code:
the address of the command just after the call

� Save the virtual segments of f

� Allocate, and initialize to 0, as many local variables as needed by g

� Set the local and argument segment pointers of g

� Transfer control to g.

When g terminates and control should return to f, the VM implementation must:

� Clear g ’s arguments and other junk from the stack

� Restore the virtual segments of f

� Transfer control back to f
(jump to the saved return address).

Q: How should we make all this work “like magic”?

A: We’ll use the stack cleverly.

The function-call-and-return protocol: the VM implementation view

function g nVars

call g nArgs

return

function g nVars

call g nArgs

return

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 8: Virtual Machine, Part II slide 17

The implementation of the VM’s stack on the host Hack RAM

Global stack:
the entire RAM area dedicated
to hold the stack

Working stack:
from SP onwards: the stack
that the current function sees

� At any point of time, only one
function (the current function)
is executing; other functions
may be waiting up the calling
chain

� Shaded areas: irrelevant to
the current function

� The current function sees
only the working stack, as
well as its virtual memory
segments

� The rest of the stack holds
the frozen states of all the
functions up the calling
hierarchy.

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 8: Virtual Machine, Part II slide 18

Implementing the call g nArgs command

Implementation: If the VM is implemented as a program
that translates VM code into assembly code, the
translator must emit the above logic in assembly.

// In the course of implementing the code of f

// (the caller), we arrive to the command call g nArgs.

// we assume that nArgs arguments have been pushed

// onto the stack. What do we do next?

// We generate a symbol, let’s call it returnAddress;

// Next, we effect the following logic:

push returnAddress // saves the return address

push LCL // saves the LCL of f

push ARG // saves the ARG of f

push THIS // saves the THIS of f

push THAT // saves the THAT of f

ARG = SP-nArgs-5 // repositions SP for g

LCL = SP // repositions LCL for g

goto g // transfers control to g

returnAddress: // the generated symbol

// In the course of implementing the code of f

// (the caller), we arrive to the command call g nArgs.

// we assume that nArgs arguments have been pushed

// onto the stack. What do we do next?

// We generate a symbol, let’s call it returnAddress;

// Next, we effect the following logic:

push returnAddress // saves the return address

push LCL // saves the LCL of f

push ARG // saves the ARG of f

push THIS // saves the THIS of f

push THAT // saves the THAT of f

ARG = SP-nArgs-5 // repositions SP for g

LCL = SP // repositions LCL for g

goto g // transfers control to g

returnAddress: // the generated symbol

call g nArgscall g nArgs

None of this code is executed yet ...
At this point we are just generating
code (or simulating the VM code on
some platform)

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 8: Virtual Machine, Part II slide 19

Implementing the function g nVars command

Implementation: If the VM is implemented as a program
that translates VM code into assembly code, the
translator must emit the above logic in assembly.

function g nVarsfunction g nVars

// to implement the command function g nVars,

// we effect the following logic:

g:

repeat nVars times:

push 0

// to implement the command function g nVars,

// we effect the following logic:

g:

repeat nVars times:

push 0

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 8: Virtual Machine, Part II slide 20

Implementing the return command

Implementation: If the VM is implemented as a program
that translates VM code into assembly code, the
translator must emit the above logic in assembly.

// In the course of implementing the code of g,

// we arrive to the command return.

// We assume that a return value has been pushed

// onto the stack.

// We effect the following logic:

frame = LCL // frame is a temp. variable

retAddr = *(frame-5) // retAddr is a temp. variable

*ARG = pop // repositions the return value

// for the caller

SP=ARG+1 // restores the caller’s SP

THAT = *(frame-1) // restores the caller’s THAT

THIS = *(frame-2) // restores the caller’s THIS

ARG = *(frame-3) // restores the caller’s ARG

LCL = *(frame-4) // restores the caller’s LCL

goto retAddr // goto returnAddress

// In the course of implementing the code of g,

// we arrive to the command return.

// We assume that a return value has been pushed

// onto the stack.

// We effect the following logic:

frame = LCL // frame is a temp. variable

retAddr = *(frame-5) // retAddr is a temp. variable

*ARG = pop // repositions the return value

// for the caller

SP=ARG+1 // restores the caller’s SP

THAT = *(frame-1) // restores the caller’s THAT

THIS = *(frame-2) // restores the caller’s THIS

ARG = *(frame-3) // restores the caller’s ARG

LCL = *(frame-4) // restores the caller’s LCL

goto retAddr // goto returnAddress

returnreturn

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 8: Virtual Machine, Part II slide 21

Bootstrapping

SP = 256 // initialize the stack pointer to 0x0100

call Sys.init // call the function that calls Main.main

SP = 256 // initialize the stack pointer to 0x0100

call Sys.init // call the function that calls Main.main

A high-level jack program (aka application) is a set of class files.
By a Jack convention, one class must be called Main, and this class must have at
least one function, called main.

The contract: when we tell the computer to execute a Jack program,
the function Main.main starts running

Implementation:

� After the program is compiled, each class file is translated into a .vm file

� The operating system is also implemented as a set of .vm files (aka “libraries”)
that co-exist alongside the program’s .vm files

� One of the OS libraries, called Sys.vm, includes a method called init.
The Sys.init function starts with some OS initialization code (we’ll deal with this
later, when we discuss the OS), then it does call Main.main

� Thus, to bootstrap, the VM implementation has to effect (e.g. in assembly),
the following operations:

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org , Chapter 8: Virtual Machine, Part II slide 22

� Extends the VM implementation described in the last lecture (chapter 7)

� The result: a single assembly program file with lots of agreed-upon symbols:

VM implementation over the Hack platform

