
CS422 Fall Semester 2014

Theory of Computation

(CS 422/MAS480B)

Lecturer:
Otfried Cheong

Lecture time: Wed, Fri 10:30–11:45

Course webpage:
http://otfried-cheong.appspot.com/courses/cs422

Warning: This is really a math course. It will cover concepts
and proofs, and not so many facts.

CS422 Textbook

Textbook
The Nature of Computation by Cristopher Moore and
Stephan Mertens.
Expensive and has about 1000 pages.
The book is available on course reserve in the library.

We will follow the book closely.

I am not an expert on complexity
theory and hope to learn a lot in
this course, together with you!

CS422 Glassboard

We have a BBS for the course on Glassboard
(www.glassboard.com).

You must regularly check the course board on Glassboard for
announcements. You can ask questions there in English or
Korean.

It is okay to register on Glassboard with a Nickname if it
makes it easier for you to ask questions.

There is a Glassboard app for iOS and Android. It will make
sure you get notifications for new posts on the BBS.

Invitation code: ykpav

CS422 Homework and Grading

Homework
Small homeworks on paper. You will have about one week
for each homework. Start early on your homework, even if
you just read the questions!

Grading Policy
Homework (20%), Quizzes (70%), Participation (10%).

Exams
I plan to have three quizzes during normal class hours.

Attendance
We will take attendance in nearly every class. You can miss
four classes without penalty. This is meant so you can have
doctor’s appointments, interviews, award ceremonies, etc.
No special excuses are given for such events.



CS422 Head-banging sessions

Once a week you meet with a small group of students and our
TA to solve practice problems in a team of two or three.

You present your solution or ideas on the blackboard, others
can comment and you can compare solutions.

Optional at the start of the semester. Come if you want.

We will have a survey of dates soon (check on Glassboard!).

Head-banging sessions will be held in Korean.

CS422 Theory of Computation

About problems solved by computers.

• Which problems can be solved?

• How fast can a problem be solved?

It is impossible to give provable answers to these questions
without a formal, mathematical definition of

problem and computer

Computability

Complexity

• Can we discuss “computation” without talking about
computers, electronics, and physics?

• Can we define (mathematically) a computer?

• Can a computer solve any problem?

CS422 A dinosaur course

The first computer science departments were created in the
late 1960s, early 1970s.

Students learnt fortran, assembler, the computer
architecture of a pdp-11, shell sort, etc.

Some material of this course is older than 1970, and has
survived practically unchanged (like turtles and sharks).

CS422 Two fundamental concepts

• Algorithms/Programs
Algorithms were used since antiquity, but became an object
of study only early in the 20th century.

• Universal Computer
In early “computers”, the program was part of the
hardware. You had to rewire the computer to run a
different program.
In contrast, a universal computer is a computer that can
run any program.

1936 was the annus mirabilis of computation, the year where
everything came to fit together.



CS422 Before universal computers

Charles Babbage’s Differential
Engine for computing tables of
trigonometric functions,
logarithms, etc.

Toy computer

CS422 Universal Computer

What shall we do to get rid of Mr. Babbage
and his calculating machine? Surely if
completed it would be worthless as far as
science is concerned?

British Prime Minister Sir Robert Peel, 1842

Punched cards already existed in the early 19th century.
Babbage’s Analytical Engine used them to design a computer
that can execute any program given to it.

A universal computer can execute an interpreter (“universal
program”): It reads the source code of another program and
executes it.

U(Π, x) = Π(x)

CS422 Universality implies non-halting

Consider the special case where x = Π

U(Π,Π) = Π(Π)

Assume that Π returns a Boolean value, and define a new
program:

V (Π) = Π(Π)

And now we can run V by giving it its own source code as
input:

V (V ) = V (V )

V (V ) can never terminate, because either result would be a
contradiction!

This is a form of Cantor’s diagonalization argument.

CS422 Hilbert’s problems

1900 David Hilbert gave a speech to the International
Congress of Mathematicians presenting 23 open problems.

Hilbert’s 10th Problem:
Specify a procedure which, in a finite number of
operations, enables one to determine whether or not a
given Diophantine equation with an arbitrary number of
variables has an integer solution.

polynomial equation with integer coefficients

1928, Hilbert posed the Entscheidungsproblem:
The Entscheidungsproblem is solved if one knows a
procedure that allows one to decide the validity of a
given logical expression by a finite number of
operations.



CS422 What is a “procedure”

Hilbert didn’t say what he meant be a procedure, and
computers were still decades away. He wanted it to be carried
out by a mathematician following a clear sequence of
operations.

The early 20th century saw mathematicians struggle with
putting mathematics on a foundation of set theory and logic.

Russell’s paradox: R = {S | S 6∈ S}.

1936: The Halting Problem is undecidable, and so the
Entscheidungsproblem is unsolvable.

1970: Hilbert’s 10th problem is undecidable.

CS422 Unprovable truth

A formal system has a set of axioms and rules of inference.

A theorem is a statement that can be proved, with some finite
chain of reasoning, from the axioms.

A formal system is consistent if there is no statement T such
that both T and T are theorems, and complete if, for all T , at
least one of T or T is a theorem.

In 1931, Kurt Gödel proved that no sufficiently powerful formal
system is both consistent and complete.

His proof constructs a self-referential statement that says:
This statement cannot be proved.

CS422 Kurt Gödel

1906–1978

Incompleteness theorem 1931:
Any sufficiently powerful formal
system contains true statements
that cannot be proven inside the
system.

CS422 Defining computation

There were several attempts to define computation.
Mathematicians concentrated on computable functions.

• Primitive recursive functions are functions built from
simpler functions (with zero and the successor function as
the basis) and primitive recursion. It is equivalent to a
straight-line program with for-loops.

The Ackermann-function is not primitive recursive.

• Partial recursive functions add µ-recursion (equivalent to
while-loops).

• λ-calculus defines computation by functions that operate
on strings:

(λx : xax)bc→ bcabc



CS422 Alonzo Church

1903–1995

First language for programs:
• λ-calculus
• formal algebraic language for

computable functions

CS422 The grand unification

Partial recursive functions and the λ-calculus turned out to be
equivalent and are powerful. But do they cover everything that
Hilbert would have called a “finite procedure”?

There were other definitions of recursive functions, and Gödel
thought the λ-calculus to be “thoroughly unsatisfactory”.

The Turing machine was more convincing to many people, and
it is equivalent to partial recursive functions and to the
λ-calculus.

CS422 Alan Turing

Won World War II.

1912–1954

Mathematically defined a computer
(Turing machine): On computable
numbers, with an application to the
Entscheidunsproblem (1936).

Proved that uncomputable functions
exist (halting problem).

CS422 Church-Turing Thesis

[A Turing machine] is able to imitate any automaton, even a
much more complicated one. . . It has reached a certain
minimum level of complexity. . . an automaton of this
complexity can, when given suitable instrcutions, do anything
that can be done by automata at all.

John von Neumann

Any system that can simulate a Turing machine can carry out
any computation at all. It is computationally universal.


