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• 3SAT ∈ NP. We know from Theorem 6.5.7 that this is true.

• A ≤P 3SAT , for every language A ∈ NP. Hence, we have to show this
for languages A such as kColor , HC , SOS , NPrim , KS , Clique, and
for infinitely many other languages.

In 1971, Cook has exactly done this: He showed that the language 3SAT
is NP-complete. Since his proof is rather technical, we will prove the NP-
completeness of another language.

6.5.3 An NP-complete domino game

We are given a finite collection of tile types. For each such type, there are
arbitrarily many tiles of this type. A tile is a square that is partitioned into
four triangles. Each of these triangles contains a symbol that belongs to a
finite alphabet Σ. Hence, a tile looks as follows:
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We are also given a square frame, consisting of cells. Each cell has the same
size as a tile, and contains a symbol of Σ.

The problem is to decide whether or not this domino game has a solution.
That is, can we completely fill the frame with tiles such that

• for any two neighboring tiles s and s′, the two triangles of s and s′ that
touch each other contain the same symbol, and

• each triangle that touches the frame contains the same symbol as the
cell of the frame that is touched by this triangle.

There is one final restriction: The orientation of the tiles is fixed, they cannot
be rotated.

Let us give a formal definition of this problem. We assume that the sym-
bols belong to the finite alphabet Σ = {0, 1}m, i.e., each symbol is encoded
as a bit-string of length m. Then, a tile type can be encoded as a tuple of
four bit-strings, i.e., as an element of Σ4. A frame consisting of t rows and t
columns can be encoded as a string in Σ4t.
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We denote the language of all solvable domino games by Domino:

Domino := {〈m, k, t, R, T1, . . . , Tk〉 :
m ≥ 1, k ≥ 1, t ≥ 1, R ∈ Σ4t, Ti ∈ Σ4, 1 ≤ i ≤ k,

frame R can be filled using tiles of types

T1, . . . , Tk.}

We will prove the following theorem.

Theorem 6.5.12 The language Domino is NP-complete.

Proof. It is clear that Domino ∈ NP: A solution consists of a t× t matrix,
in which the (i, j)-entry indicates the type of the tile that occupies position
(i, j) in the frame. The number of bits needed to specify such a solution is
polynomial in the length of the input. Moreover, we can verify in polynomial
time whether or not any given “solution” is correct.

It remains to show that

A ≤P Domino, for every language A in NP.

Let A be an arbitrary language in NP. Then there exist a polynomial p and
a non-deterministic Turing machine M , that decides the language A in time
p. We may assume that this Turing machine has only one tape.

On input w = a1a2 . . . an, the Turing machine M starts in the start state
z0, with its tape head on the cell containing the symbol a1. We may assume
that during the entire computation, the tape head never moves to the left of
this initial cell. Hence, the entire computation “takes place” in and to the
right of the initial cell. We know that

w ∈ A ⇐⇒ on input w, there exists an accepting computation
that makes at most p(n) computation steps.

At the end of such an accepting computation, the tape only contains the
symbol 1, which we may assume to be in the initial cell, and M is in the final
state z1. In this case, we may assume that the accepting computation makes
exactly p(n) computation steps. (If this is not the case, then we extend the
computation using the instruction z11 → z11N .)

We need one more technical detail: We may assume that za → z′bR and
za′ → z′′b′L are not both instructions of M . Hence, the state of the Turing
machine uniquely determines the direction in which the tape head moves.
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We have to define a domino game, that depends on the input string w
and the Turing machine M , such that

w ∈ A ⇐⇒ this domino game is solvable.

The idea is to encode an accepting computation of the Turing machine M as
a solution of the domino game. In order to do this, we use a frame in which
each row corresponds to one computation step. This frame consists of p(n)
rows. Since an accepting computation makes exactly p(n) computation steps,
and since the tape head never moves to the left of the initial cell, this tape
head can visit only p(n) cells. Therefore, our frame will have p(n) columns.

The domino game will use the following tile types:

1. For each symbol a in the alphabet of the Turing machine M :
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Intuition: Before and after the computation step, the tape head is not
on this cell.

2. For each instruction za → z′bR of the Turing machine M :
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Intuition: Before the computation step, the tape head is on this cell;
the tape head makes one step to the right.

3. For each instruction za → z′bL of the Turing machine M :
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Intuition: Before the computation step, the tape head is on this cell;
the tape head makes one step to the left.

4. For each instruction za → z′bN of the Turing machine M :
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Intuition: Before and after the computation step, the tape head is on
this cell.

5. For each state z and for each symbol a in the alphabet of the Turing
machine M , there are two tile types:
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Intuition: The leftmost tile indicates that the tape head enters this cell
from the left; the righmost tile indicates that the tape head enters this
cell from the right.

This specifies all tile types. The p(n)× p(n) frame is given in Figure 6.5.
The top row corresponds to the start of the computation, whereas the bottom
row corresponds to the end of the computation. The left and right columns
correspond to the part of the tape in which the tape head can move.

The encodings of these tile types and the frame can be computed in
polynomial time.

It can be shown that, for any input string w, any accepting computation
of length p(n) of the Turing machine M can be encoded as a solution of
this domino game. Conversely, any solution of this domino game can be
“translated” to an accepting computation of length p(n) of M , on input
string w. Hence, the following holds.

w ∈ A ⇐⇒ there exists an accepting computation that makes

p(n) computation steps

⇐⇒ the domino game is solvable.
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Figure 6.5: The p(n)× p(n) frame for the domino game.

Therefore, we have A ≤P Domino. Hence, the language Domino is NP-
complete.

An example of a domino game

We have defined the domino game corresponding to a Turing machine that
solves a decision problem. Of course, we can also do this for Turing machines
that compute functions. In this section, we will exactly do this for a Turing
machine that computes the successor function x → x+ 1.

We will design a Turing machine with one tape, that gets as input the
binary representation of a natural number x, and that computes the binary
representation of x+ 1.

Start of the computation: The tape contains a 0 followed by the binary
representation of the integer x ∈ N0. The tape head is on the leftmost bit
(which is 0), and the Turing machine is in the start state z0. Here is an
example, where x = 431:
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0 1 1 0 1 0 1 1 1 1 2

6

End of the computation: The tape contains the binary representation of
the number x + 1. The tape head is on the rightmost 1, and the Turing
machine is in the final state z1. For our example, the tape looks as follows:

0 1 1 0 1 1 0 0 0 0 2

6

Our Turing machine will use the following states:

z0 : start state; tape head moves to the right
z1 : final state
z2 : tape head moves to the left; on its way to the left, it has not read 0

The Turing machine has the following instructions:

z00 → z00R z21 → z20L
z01 → z01R z20 → z11N
z02 → z22L

In Figure 6.6, you can see the sequence of states and tape contents of this
Turing machine on input x = 11.

We now construct the domino game that corresponds to the computation
of this Turing machine on input x = 11. Following the general construction
in Section 6.5.3, we obtain the following tile types:

1. The three symbols of the alphabet yield three tile types:
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2. The five instructions of the Turing machine yield five tile types:
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(z0, 0) 1 0 1 1 2

0 (z0, 1) 0 1 1 2

0 1 (z0, 0) 1 1 2

0 1 0 (z0, 1) 1 2

0 1 0 1 (z0, 1) 2

0 1 0 1 1 (z0,2)
0 1 0 1 (z2, 1) 2

0 1 0 (z2, 1) 0 2

0 1 (z2, 0) 0 0 2

0 1 (z1, 1) 0 0 2

Figure 6.6: The computation of the Turing machine on input x = 11. The
pair (state,symbol) indicates the position of the tape head.
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3. The states z0 and z2, and the three symbols of the alphabet yield twelve
tile types:
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The computation of the Turing machine on input x = 11 consists of nine
computation steps. During this computation, the tape head visits exactly
six cells. Therefore, the frame for the domino game has nine rows and six
columns. This frame is given in Figure 6.7. In Figure 6.8, you find the
solution of the domino game. Observe that this solution is nothing but
an equivalent way of writing the computation of Figure 6.6. Hence, the
computation of the Turing machine corresponds to a solution of the domino
game; in fact, the converse also holds.
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Figure 6.7: The frame for the domino game for input x = 11.
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Figure 6.8: The solution for the domino game for input x = 11.
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6.5.4 Examples of NP-complete languages

In Section 6.5.3, we have shown that Domino is NP-complete. Using this
result, we will apply Theorem 6.5.11 to prove the NP-completeness of some
other languages.

Satisfiability

We consider Boolean formulas ϕ, in the variables x1, x2, . . . , xm, having the
form

ϕ = C1 ∧ C2 ∧ . . . ∧ Ck, (6.9)

where each Ci, 1 ≤ i ≤ k, is of the following form:

Ci = ℓi1 ∨ ℓi2 ∨ . . . ∨ ℓiki.

Each ℓij is either a variable or the negation of a variable. Such a formula ϕ
is said to be satisfiable, if there exists a truth-value in {0, 1} for each of the
variables x1, x2, . . . , xm, such that the entire formula ϕ is true. We define the
following language:

SAT := {〈ϕ〉 : ϕ is of the form (6.9) and is satisfiable}.

We will prove that SAT is NP-complete.
It is clear that SAT ∈ NP. If we can show that

Domino ≤P SAT ,

then it follows from Theorem 6.5.11 that SAT is NP-complete. (In Theo-
rem 6.5.11, take B := Domino and C := SAT .)

Hence, we need a function f ∈ FP, that maps input strings for Domino
to input strings for SAT , in such a way that for every domino game D, the
following holds:

domino game D is solvable ⇐⇒ the formula encoded by the
string f(〈D〉) is satisfiable. (6.10)

Let us consider an arbitrary domino game D. Let k be the number of
tile types, and let the frame have t rows and t columns. We denote the tile
types by T1, T2, . . . , Tk.
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We map this domino game D to a Boolean formula ϕ, such that (6.10)
holds. The formula ϕ will have variables

xijℓ, 1 ≤ i ≤ t, 1 ≤ j ≤ t, 1 ≤ ℓ ≤ k.

These variables can be interpretated as follows:

xijℓ = 1 ⇐⇒ there is a tile of type Tℓ at position (i, j) of the frame.

We define:

• For all i and j with 1 ≤ i ≤ t and 1 ≤ j ≤ t:

C1
ij := xij1 ∨ xij2 ∨ . . . ∨ xijk.

This formula expresses the condition that there is at least one tile at
position (i, j).

• For all i, j, ℓ and ℓ′ with 1 ≤ i ≤ t, 1 ≤ j ≤ t, and 1 ≤ ℓ < ℓ′ ≤ k:

C2
ijℓℓ′ := ¬xijℓ ∨ ¬xijℓ′.

This formula expresses the condition that there is at most one tile at
position (i, j).

• For all i, j, ℓ and ℓ′ with 1 ≤ i ≤ t, 1 ≤ j < t, 1 ≤ ℓ ≤ k and 1 ≤ ℓ′ ≤ k,
such that i < t and the right symbol on a tile of type Tℓ is not equal
to the left symbol on a tile of type Tℓ′:

C3
ijℓℓ′ := ¬xijℓ ∨ ¬xi,j+1,ℓ′.

This formula expresses the condition that neighboring tiles in the same
row “fit” together. There are symmetric formulas for neighboring tiles
in the same column.

• For all j and ℓ with 1 ≤ j ≤ t and 1 ≤ ℓ ≤ k, such that the top symbol
on a tile of type Tℓ is not equal to the symbol at position j of the upper
boundary of the frame:

C4
jℓ := ¬x1jℓ.

This formula expresses the condition that tiles that touch the upper
boundary of the frame “fit” there. There are symmetric formulas for
the lower, left, and right boundaries of the frame.
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The formula ϕ is the conjunction of all these formulas C1
ij , C

2
ijℓℓ′, C

3
ijℓℓ′, and

C4
jℓ. The complete formula ϕ consists of

O(t2k + t2k2 + t2k2 + tk) = O(t2k2)

terms, i.e., its length is polynomial in the length of the domino game. This
implies that ϕ can be constructed in polynomial time. Hence, the function
f that maps the domino game D to the Boolean formula ϕ, is in the class
FP. It is not difficult to see that (6.10) holds for this function f . Therefore,
we have proved the following result.

Theorem 6.5.13 The language SAT is NP-complete.

In Section 6.5.1, we have defined the language 3SAT .

Theorem 6.5.14 The language 3SAT is NP-complete.

Proof. It is clear that 3SAT ∈ NP. If we can show that

SAT ≤P 3SAT ,

then the claim follows from Theorem 6.5.11. Let

ϕ = C1 ∧ C2 ∧ . . . ∧ Ck

be an input for SAT , in the variables x1, x2, . . . , xm. We map ϕ, in polynomial
time, to an input ϕ′ for 3SAT , such that

ϕ is satisfiable ⇐⇒ ϕ′ is satisfiable. (6.11)

For each i with 1 ≤ i ≤ k, we do the following. Consider

Ci = ℓi1 ∨ ℓi2 ∨ . . . ∨ ℓiki.

• If ki = 1, then we define

C ′
i := ℓi1 ∨ ℓi1 ∨ ℓi1.

• If ki = 2, then we define

C ′
i := ℓi1 ∨ ℓi2 ∨ ℓi2.


