KAIST CS322

Two fundamental concepts

e Algorithms/Programs
Algorithms were used since antiquity, but became an object
of study only early in the 20th century.

e Universal Computer
In early “computers”, the program was part of the
hardware. You had to rewire the computer to run a
different program.
In contrast, a universal computer is a computer that can
run any program.

1936 was the annus mirabilis of computation, the year where
everything came to fit together.

KAIST CS322

Universal Computer

What shall we do to get rid of Mr. Babbage
and his calculating machine? Surely if
completed it would be worthless as far as
science is concerned?

British Prime Minister Sir Robert Peel, 1842

Punched cards already existed in the early 19th century.
Babbage's Analytical Engine used them to design a computer
that can execute any program given to it.

A universal computer can execute an interpreter (“universal
program”): It reads the source code of another program and
executes it.

So we can define a program V as follows: V ((P)) = P((P)).

KAIST CS322

Before universal computers

Charles Babbage's Differential
Engine for computing tables of
trigonometric functions,
logarithms, etc.

Toy computer

KAIST CS322

1900 David Hilbert gave a speech to the International
Congress of Mathematicians presenting 23 open problems.

Hilbert's 10th Problem:
Specify a procedure which, in a finite number of
operations, enables one to determine whether or not a
given Diophantine equation with an arbitrary number of

variablesthas an integer solution.
polynomial equation with integer coefficients

1928, Hilbert posed the Entscheidungsproblem:
The Entscheidungsproblem is solved if one knows a
procedure that allows one to decide the validity of a
given logical expression by a finite number of
operations.

Hilbert's problems




KAIST CS322

Hilbert didn't say what he meant be a procedure, and
computers were still decades away.

What is a “procedure”

The early 20th century saw mathematicians struggle with
putting mathematics on a foundation of set theory and logic.

Russell's paradox: R={S | S ¢ S}.

In the early 20th century models of computation were defined
using ideas from set theory, but it was not clear whether any of
them captured the universe of all conceivable computations.

In 1936, all these models turned out to be equivalent, giving
rise to the Church-Turing Thesis.

KAIST CS322

Consider the problem: Given a program P, does P hold for
every possible input x?

The next level

We can express this as

Va3t HALTSINTIME(P, x, t)

Imagine a hypercomputer that has access to a black box that
solves the halting problem (in finite time).

A hypercomputer cannot solve the halting problem for
hypercomputers.

Imagine a hyperhypercomputer that has access to a black
box that solves the halting problem for hypercomputers.

Imagine a hyperhyperhypercomputer that has access to a black box
that solves the halting problem for hyperhypercomputers.

KAIST €5322 RE and coRE

HAvLTS(P, ) = 3t HALTSINTIME(P, x, t)

(Recursively) enumerable problems (RE) are exactly the
problems A of the form A(x) = Jw B(x,w), where B is
decidable.

coRE is the family of complements of enumerable languages.
A language A is in coRE if and only if it can be expressed as
A(x) = Vw B(x,w), where B is decidable.

We have shown

Decidable = RE N coRE

KAIST CS322

A formal system has a set of axioms and rules of inference.

Unprovable truth

A theorem is a statement that can be proved, with some finite
chain of reasoning, from the axioms.

A formal system is consistent if there is no statement 7T such
that both 7" and T" are theorems, and complete if, for all T', at
least one of T or T is a theorem.

In 1931, Kurt Godel proved that no sufficiently powerful formal
system is both consistent and complete.

His proof constructs a self-referential statement that says:
This statement cannot be proved.



KAIST CS322

Defining computation

There were several attempts to define computation.
Mathematicians concentrated on computable functions.

e Primitive recursive functions are functions built from
simpler functions (with zero and the successor function as
the basis) and primitive recursion. It is equivalent to a
straight-line program with for-loops.

The Ackermann-function is not primitive recursive.

e Partial recursive functions add p-recursion (equivalent to
while-loops).

e )\-calculus defines computation by functions that operate
on strings:

(Az : zax)bc — beabe

KAIST €5322 Church-Turing Thesis

[A Turing machine] is able to imitate any automaton, even a
much more complicated one. . . It has reached a certain
minimum level of complexity. ..an automaton of this
complexity can, when given suitable instrcutions, do anything
that can be done by automata at all.

John von Neumann

Any system that can simulate a Turing machine can carry out
any computation at all. It is computationally universal.

KAIST CS322

Partial recursive functions and the A-calculus turned out to be
equivalent and are powerful. But do they cover everuthing that
Hilbert would have called a “finite procedure”?

The grand unification

There were other definitions of recursive functions, and Godel
thought the A-calculus to be “thoroughly unsatisfactory” .

The Turing machine was more convincing to many people, and
it is equivalent to partial recursive functions and to the
A-calculus.

KAIST CS322

A counter machine is a finite automaton with a finite number
of integer counters. It can increment and decrement the
counters, and test if they are zero.

=0?

yes

Counter machines

no

A two-counter machine can simulate a Turing machine.



KAIST CS322

Two-dimensional finite automaton

It cannot read or write, only move its position and test if it is
on the edge.

This is a two-counter machine in disguise.

KAIST 5322 The Meaning of Life

Game of Life is a cellular automaton on the two-dimensional
infinite lattice invented by John Horton Conway in 1970. A cell
is born when it has exactly three live neighbors, and dies if it
has less than two or more than three live neighbors (loneliness
or overcrowding).

- B -

t=1 t=1 t=2

KAIST CS322

This is a program in the programming language FRACTRAN:

FRACTRAN

1778192329779577 1 1113151555

918551383329231917131114 2 1

The state is an integer n. In each stop, find the first fraction
p/q in the list where m = (p/q)n is an integer, and replace n
by m.

This program computes the prime numbers.

FRACTRAN can simulate a counter machine, and therefore a
Turing machine.

It is a special case of a Collatz sequence, which shows that the
Collatz problem is undecidable.

KAIST C5322
A glider gun:

Life can compute




KAIST CS322

The Tiling problem is to decide if one can tile the
two-dimensional plane with tiles of a given set of types.

X X x

a b c

Tilings

Wang tiles have a color along each edge, and the color of
neighboring tiles have to match.

KAIST €5322 Tiling is undecidable

Given a TM M, we design a set of Wang tiles s.t. each row is
one step of M's computation.

a N, bys L d
N

/g
L s s 4
~ ~

If there is no tile with the HALT state, then the plane will be
tiled if and only if M runs forever.



