
� CS 373: Theory of Computation
� Madhusudan Parthasarathy

Lecture 22: CFG membership problem and the

CYK Parsing Algorithm

15 April 2010

We will look at the membership problem for CFGs: that of deciding whether a given
word w is in the language de�ned by a context-free grammar, and show the problem is
decidable. We will �rst present a naive simple algorithm that exploits the fact that grammars
in Chomsky Normal form have a small parse trees. If |w| = n, this gives a membership
algorithm that works in time O(2n) (for a �xed grammar G). Then, we present the more
e�cient CYK algorithm that works in time O(n3), using dynamic programming.

1 A naive membership algorithm

In this section, we prove that CNF give very compact parsing trees for strings in the language
of the grammar.

In the following, we will need the following easy observation.

Observation 1.1 Consider a grammar G which is CNF, and a variable X of G which is not
the start variable. Then, any string derived from X must be of length at least one.

Claim 1.2 Let G = (V ,Σ,R, S) be a context-free grammar in Chomsky normal form, and

w be a string of length one. Furthermore, assume that there is a X ∈ V, such that X
∗

=⇒ w
(i.e., w can be derived from X), and let T be the corresponding parse tree for w. Then the
tree T has exactly 2 |w| − 1 internal nodes.

Proof: A full binary tree is a tree were every node other than the leaves has two children.
It is easy to verify by easy induction that such a tree with m leaves, has m − 1 internal
nodes.

Now, the given tree T is not quite a full binary tree. Indeed, the kth leaf (from the left)
of T , denoted by `k, is the k character of w, and its parent must be a node labeled by a
variable, Xk, for k = 1, . . . , n. Furthermore, we must have that the parent of `k has only
a single child. As such, if we remove the n leafs of T , we remain with a full binary tree
T ′ with n leafs (every parent of a leaf `k became a leaf). This tree is a full binary tree,
because any internal node, must correspond to a non-terminal derivation of a CNF grammar,
and any such derivation has the form X → YV Z; that is, the derivation corresponds to an
internal node with two children in T . Now, the tree T ′ has n − 1 internal nodes, by the
aforementioned fact about full binary trees. As such, T ′ has n − 1 internal nodes. Each
leaf of T ′ is an internal node of T , and T ′ has n such leafs. We conclude that T has 2n− 1
internal nodes.

1



Alternative proof for Claim 1.2.

Proof: The proof is by induction on the length of w.
If |w| = 1 then we claim that w must be derived by a single rule X → c, where c is a

character. Otherwise, if the root corresponds to a rule of the form X → YZ, then by the
above observation, the generated string for Y and Z are each of length at least one, which
implies that the overall length of the word is at least 2, a contradiction. (We are using here
implicitly the property of a CNF that the start variable can never appear on the right side
of a rule, and that the start symbol is the only symbol that can yield the empty string.)

As such, if |w| = 1, then the parsing tree has a single internal node, and the claim holds
as 2 |w| − 1 = 1.

So, assume that we proved the claim for all words strictly shorter than w, and consider
the parse tree T for w being derived from some variable X ∈ V . Since |w| > 1, it must
be that the root of the parse tree T corresponds to a rule of the form S → X1X2. Let w1

and w2 be the portions of w generated by X1 and X2 respectively, and let T1 and T2 denote
the corresponding subtrees of T . Clearly w = w1w2, |w1| > 0 and |w2| > 0, by the above
observation. Clearly, T1 (resp. T2) is a tree that derives w1 (resp. w2) from X1 (resp. X2).
By induction, T1 (resp. T2) has 2 |w1| − 1 (resp. 2 |w2| − 1) internal nodes. As such, T has

N = 1 +

(
# internal
nodes of T1

)
+

(
# internal
nodes of T2

)
= 1 +(2 |w1| − 1) +(2 |w2| − 1) = 2(|w1|+ |w2|)− 1

= 2 |w| − 1,

The following is the same claim, restated as a claim on the number of derivations used.

Claim 1.3 If G is a context-free grammar in Chomsky normal form, and w is a string of
length n ≥ 1, then any derivation of w from any variable X contains exactly 2n− 1 steps.

Theorem 1.4 Given a context free grammar G, and a word w, then one can decide if w ∈
L(G) (i.e. there is an algorithm for this problem that always halts).

Proof: Convert G into Chomsky normal form, and let G ′ be the resulting grammar tree. Let
n = |w|. Observe that w has a parse tree using G ′ with 2n− 1 internal nodes, by Claim 1.2.
Enumerate all such possible parse trees (their number is large, but �nite), and check if any
of them is (i) a legal parse tree for G ′, and (ii) it derives the word w. If we found such a legal
tree deriving w, then w ∈ L(G). Otherwise, w can not be generated by G ′, which implies
that w /∈ L(G).

2 CYK parsing

2.1 Discussion

We already saw that one can decide if a word is in the language de�ned by a context-free
grammar, but the construction made no attempt to be practical. There were two problems
with this algorithm. First, we converted the grammar to be in Chomsky Normal Form

2



(CNF). Most practical applications need the parse to show the structure using the original
input grammar. Second, our method blindly generated all parse trees of the right size,
without regard to what was in the string to be parsed. This is ine�cient since there may be
a large number of parse trees (i.e., exponential in the length of the word) of this size.

The Cocke-Younger-Kasami (CYK) algorithm solves the second of these problems, using
a table data-structure called the chart . This basic technique can be extended (e.g. Earley's
algorithm) to handle grammars that are not in Chomsky Normal Form and to linear-time
parsing for special types of CFGs.

In general, the number of parses for a string w is exponential in the length of w. For
example, consider the sentence �Mr Plum kill Ms Marple at midnight in the bedroom

with a sword.� There are three prepositional phrases: �at midnight�, �in the bedroom,�
and �with a sword.� Each of these can either be describing the main action (e.g. the killing
was done with a sword) or the noun right before it (e.g. there are several bedrooms and we
mean the one with a sword hanging over the dresser). Since each decision is independent, a
sentence with k prepositional phrases like this has 2k possible parses.1

So it's really bad to organize parsing by considering all possible parse trees. Instead,
consider all substrings in our input. If w has length n, then it has Σn

k=1(n− k + 1) =
n(n+1)

2
=

(
n+1

2

)
substrings.2 CYK computes a table summarizing the possible parses for each

substring. From the table, we can quickly tell whether an input has a parse and extract one
representative parse tree.3

2.2 CYK by example

Suppose the input sentence w is �Jeff trains geometry students� and the grammar has
start symbol Sand the following rules:

=⇒ S→ N VP

VN→ N N
VP → V N
N→ students | Jeff | geometry | trains
V→ trains

Given a string w of length n, we build a triangular table with n rows and n columns.
Conceptually, we write w below the bottom row of the table. The ith column correspond
to the ith word. The cell at the ith column and the jth row (from the bottom) of the table
corresponds to the substring starting the ith character of length j. The following is the
table, and the substrings each entry corresponds to.

1In real life, long sentences in news reports often exhibit versions of this problem.
2Draw an n by n + 1 rectangle and �ll in the lower half.
3It still takes exponential time to extract all parse trees from the table, but we usually interested only in

one of these trees.

3



len

4
Jeff trains

geometry students

3 Jeff trains geometry trains geometry students

2 Jeff trains trains geometry geometry students

1 Jeff trains geometry students

Jeff trains geometry students

�rst word in substring

CYK builds a table containing a cell for each substring. The cell for a substring x contains
a list of variables V from which we can derive x (in one or more steps).

4
3

length 2
1

Jeff trains geometry students

�rst word in substring

The bottom row contains the variables that can derive each substring of length 1. This
is easy to �ll in:

4
3

length 2
1 N N,V N N

Je� trains geometry students
�rst word in substring

Now we �ll the table row-by-row, moving upwards. To �ll in the cell for a 2-word substring
x, we look at the labels in the cells for its two constituent words and see what rules could
derive this pair of labels. In this case, we use the rules N→ N N and VP → V N to produce:

4
3

length 2 N N,VP N
1 N N,V N N

Je� trains geometry students
�rst word in substring

For each longer substring x, we have to consider all the ways to divide x into two shorter
substrings. For example, suppose x is the substring of length 3 starting with �trains�. This
can be divided into divided into (a) �trains geometry� plus �students� or (b) �trains� plus
�geometry students.�

Consider option (a). Looking at the lower rows of the table, �students� has label N. One
label for �trains geometry� is VP, but we don't have any rule whose righthand side contains

4



CYK ( G, w )
G = (V ,Σ,R, S), Σ ∪ V = {X1, . . . ,Xr}, w = w1w2 . . . wn.

begin

Initialize the 3d array B[1 . . . n, 1 . . . n, 1 . . . r] to FALSE
for i = 1 to n do

for (Xj → x) ∈ R do

if x = wi then B[i, i, j]← TRUE.
for i = 2 to n do /* Length of span */

for L = 1 to n− i+ 1 do /* Start of span */
R = L+ i− 1 /* Current span s = wLwL+1 . . . wR */
for M = L+ 1 to R do /* Partition of span */

/* x = wLwL+1 . . . wM−1, y = wMwM+1 . . . wR, and s = xy */
for (Xα → XβXγ) ∈ R do

/* Can we match Xβ to x and Xγ to y? */
if B[L,M − 1, β] and B[M,R, γ] then

B[L,R, α]← TRUE /* If so, then can generate s by Xα! */
for i = 1 to r do

if B[1, n, i] then return TRUE

return FALSE

Figure 1: The CYK algorithm.

VP followed by N. The other label for �trains geometry� is N. In this case, we �nd the rule
N→ N N. So one label for x is N. (That is, x is one big long compound noun.)

Now consider option (b). Again, we have the possibility that both parts have label N.
But we also �nd that �trains� could have the label V. We can then apply the rule VP → V N
to add the label VP to the cell for x.

4
3 N,VP

length 2 N N,VP N
1 N N,V N N

Je� trains geometry students
�rst word in substring

Repeating this procedure for the remaining two cells, we get:

4 N,S
3 N,S N,VP

length 2 N N,VP N
1 N N,V N N

Je� trains geometry students
�rst word in substring

Remember that a string is in the language if it can be derived from the start symbol S.
The top cell in the table contains the variables from which we can derive the entire input
string. Since S is in that top cell, we know that our string is in the language.

5



By adding some simple annotations to these tables as we �ll them in, we can make it
easy to read out an entire parse tree by tracing downwards from the top cell. In this case,
the tree:

S

N VP

V N

N N

Jeff trains geometry students

We have O(n2) cells in the table. For each cell, we have to consider n ways to divide its
substring into two smaller substrings. So the table-�lling procedure takes only O(n3) time.

3 The CYK algorithm

In general, we get the following result.

Theorem 3.1 Let G = (V ,Σ,R, S) be a grammar in CNF with r = |Σ| + |V| variables and
terminals, and t = |R| rules. Let w ∈ Σ∗ be a word of length n. Then, one can compute a
parse tree for w using G, if w ∈ L(G). The running time of the algorithm is O(n3t).

The result just follow from the CYK algorithm depicted in Figure 1. Note, that our
pseudo-code just decides if a word can be generated by a grammar. With slight modi�cations,
one can even generate the parse tree.

6


	A naive membership algorithm
	CYK parsing
	Discussion
	CYK by example

	The CYK algorithm

