
� :
�

Lecture 2: Strings, Languages, DFAs

24 January 2010

This lecture covers material on strings and languages from Sipser chapter 0. Also, this
lecture covers an account of countable and uncountable sets, and shows that C-programs
cannot decide all languages.

1 Alphabets, strings, and languages

1.1 Alphabets

An alphabet is any �nite set of characters.
Here are some examples for such alphabets:

(i) {0, 1}.

(ii) {a, b, c}.

(iii) {0, 1,#}.

(iv) {a, ...z, A, ...Z}: all the letters in the English language.

(v) ASCII - this is the standard encoding schemes used by computers mappings bytes (i.e.,
integers in the range 0..255) to characters. As such, a is 65, and the space character
is 32.

(vi) {moveforward, moveback, rotate90, reset}.

1.2 Strings

This section should be recapping stu� already seen in discussion section 1.
A string over an alphabet Σ is a �nite sequence of characters from Σ.
Some sample strings with alphabet (say) Σ = {a, b, c} are abc, baba, and aaaabbbbccc.
The length of a string x is the number of characters in x, and it is denoted by |x|. Thus,

the length of the string w = abcdef is |w| = 6.
The empty string is denoted by ε, and it (of course) has length 0. The empty string is

the string containing zero characters in it.
The concatenation of two strings x and w is denoted by xw, and it is the string formed

by the string x followed by the string w. As a concrete example, consider x = cat, w = nip

and the concatenated strings xw = catnip and wx = nipcat.
Naturally, concatenating with the empty string results in no change in the string. For-

mally, for any string x, we have that xε = x. As such εε = ε.

1

For a string w, the string x is a substring of w if the string x appears contiguously in
w.

As such, for w =abcdef

we have that bcd is a substring of w,

but ace is not a substring of w.

A string x is a su�x of w if its a substring of w appearing in the end of w. Similarly, y
is a pre�x of w if y is a substring of w appearing in the beginning of w.

As such, for w =abcdef

we have that abc is a pre�x of w,

and def is a su�x of w.

Here is a formal de�nition of pre�x and substring.

De�nition 1.1 The string x is a pre�x of a string w, if there exists a string z, such that
w = xz.

Similarly, x is a substring of w if there exist strings y and z such that w = yxz.

1.3 Languages

A language is a set of strings. One special language is Σ∗, which is the set of all possible
strings generated over the alphabet Σ∗. For example, if

Σ = {a, b, c} then Σ∗ = {ε, a, b, c, aa, ab, ac, ba, . . . , aaaaaabbbaababa, . . .} .

Namely, Σ∗ is the �full� language made of characters of Σ. Naturally, any language over
Σ is going to be a subset of Σ∗.

Example 1.2 The following is a language

L = {b, ba, baa, baaa, baaaa, ...} .

Now, is the following a language?

{aa, ab, ba, ε} .

Sure � it is not a very �interesting� language because its �nite, but its de�nitely a language.
How about {aa, ab, ba, ∅}. Is this a language? No! Because ∅ is no a valid string (which

comes to demonstrate that the empty word ε and ∅ are not the same creature, and they
should be treated di�erently.

Lexicographic ordering of a set of strings is an ordering of strings that have shorter
strings �rst, and sort the strings alphabetically within each length. Naturally, we assume
that we have an order on the given alphabet.

Thus, for Σ = {a, b}, the Lexicographic ordering of Σ∗ is

ε, a, b, aa, ab, ba, bb, aaa, aab,

2

1.3.1 Languages and set notation

Most of the time it would be more useful to use set notations to de�ne a language; that is,
de�ne a language by the property the strings in this language posses.

For example, consider the following set of strings

L1 =
{
x
∣∣∣x ∈ {a, b}∗ and |x| is even

}
.

In words, L1 is the language of all strings made out of a, b that have even length.
Next, consider the following set

L2 =
{
x
∣∣∣ there is a w such that xw = illinois

}
.

So L2 is the language made out of all pre�xes of L2. We can write L2 explicitly, but its
tedious. Indeed,

L2 = {ε, i, il, ill, illi, illin, illino, illinoi, illinois} .

1.3.2 Why should we care about languages?

Consider the language Lprimes that contains all strings over Σ = {0, 1, . . . , 9} which are prime
numbers. If we can build a fast computer program (or an automata) that can tell us whether
a string s (i.e., a number) is in Lprimes, then we decide if a number is prime or not. And this
is a very useful program to have, since most encryption schemes currently used by computers
(i.e., RSA) rely on the ability to �nd very large prime numbers.

Let us state it explicitly: The ability to decide if a word is
in a speci�c language (like Lprimes) is equivalent to performing
a computational task (which might be extremely non-trivial).
You can think about this schematically, as a program that gets
as input a number (i.e., string made out of digits), and decides
if it is prime or not. If the input is a prime number, it outputs
Yes and otherwise it outputs No. See �gure on the right.

Program decide-
ing if ihe input is
a prime number.

Input

Yes

No

1.4 Strings and programs

An text �le (i.e., source code of a program) is a long one dimensional string with special 〈NL〉
(i.e., newline) characters that instruct the computer how to display the �le on the screen.
That is, the special 〈NL〉 characters instruct the computer to start a new line. Thus, the text
�le

if x=y then

jump up and down and scream.

Is in fact encoded on the computer as the string
if x=y then〈NL〉 jump up and down and scream.

Here, denote the special space character and 〈NL〉 is the new-line character.

3

It would be sometime useful to use similar �complicated� encoding schemes, with sub-
parts separated by # or $ rather than by 〈NL〉.

Program input and output can be consider to be �les. So a standard program can be
taught of as a function that maps strings to strings.1 That is P : Σ∗ → Σ∗. Most machines
in this class map input strings to two outputs: �yes� and �no�. A few automatas and most
real-world machines produce more complex output.

2 Countable and uncountable sets

The notion of cardinality of �nite sets is known to you. For example, most sensible people
will agree that the set {a, b, c} is of the same cardinality (or size) as the set {x, y, z}. Why?
Because, you would say, both elements have 3 elements.

Now, suppose I told you that I don't like/know numbers. Can you explain why the two
sets above are of the same cardinality, without using numbers?

Aside: In fact, I have noticed that teaching numbers to little children is hard to motivate.
Why should they learn to count? Here is a simple motivation. If you give the kid 4 pieces of
candy, and asked her to distribute among 5 friends, you'll see perplexion (unless, of course,
she decides there are too few, and she will have it all herself). But you could argue that
one way to �gure out whether you have enough, is to count (using numbers) the number of
pieces of candy and people.

So, how do we argue that {a, b, c} and {x, y, z} have the same cardinality, without using
numbers? A simple way is through a 1-1 correspondence: there is a 1-1 correspondence
between the two sets, for example f that associates a to y, b to x, and c to z. So we could
say two sets have the same cardinality if there is a 1-1 correspondence between them.

Aside: Notice that in motivating the child to learn numbers, above, the real problem
was to see whether there is a 1-1 correspondence between friends and pieces of candy� one
candy for each friend.

The remarkable property of the above de�nition is that it extends to in�nite sets, and
gives an interesting way to see that two in�nite sets may have di�erent cardinality. This
study was set forth by Georg Cantor (1845-1918).

An in�nite set A is said to have the same cardinality as that of B, denoted |A| = |B|,
if there is a function f : A → B that is a 1-1 correspondence (i.e. injective and surjective)
between A and B.

For example, consider N = {1, 2, 3, . . .} and the set of all even numbers Even = {2, 4, 6, . . .}.
Then N and Even have the same cardinality, i.e. |N| = |Even|, since the function f : N →
Even, de�ned as f(n) = 2n, for every n ∈ N, is a 1-1 correspondence.

An in�nite set A is said to be countable if there is a 1-1 correspondence between N and
A. (Eg. Even is countable.)

Intuitively, a set A is countable, if you can lay out the elements of A as a1, a2, a3, . . . ,
and this list will cover all of A. In other words, you can say �a1 is the �rst element, a2 is
the second element, a3 is the third, . . . � and lay out the entire set A. It's tempting to think
that all in�nite sets are countable� but this is not true, as we will show below.

1Here, we are considering simple programs that just read some input, and print out output, without fancy

windows and stu� like that.

4

Before we show that, here are a few easy things to show:

Theorem 2.1 If an in�nite set A is countable, and B ⊆ A and B is in�nite, then B is

countable as well.

Theorem 2.2 If A and B are countable in�nite sets, then A×B is also countable.

The above can be shown as follows. If A and B are countable, then we can lay out A as
{a1, a2, . . .} and B = {b1, b2, . . .}. Now A×B can be laid out as

(a1, b1), (a2, b1), (a1, b2), (a1, b3), (a2, b2), (a3, b1), (a1, b4), . . .

Intuitively, we lay out all (ai, aj) such that i+ j = n, for increasing values of n. If you draw
this on a table, you'll see this as exploring larger and larger diagonals. Clearly this will cover
all elements of A×B� every element of A×B will occur at some point in this ordering.

We can also show that the set of all �nite strings over a �nite alphabet Σ is countable.
For example, let Σ = {0, 1}. We can show that Σ∗ is countable, using the lexicographic
ordering over Σ∗. Fixing an ordering on Σ (say 0 < 1), we can lay down the elements of Σ∗

as {ε, 0, 1, 00, 01, 10, 11, 000, . . .}. Intuitively, we lay down the words in increasing order of
length, and for each length, we de�ne the ordering on words of that length in lex ordering
(dictionary order). We won't de�ne the ordering formally, but it is clear that it can be
de�ned, and will cover the whole of Σ∗.

Uncountability: A set is uncountable if it is not countable.
Let us now consider in�nite strings over a �nite alphabet Σ. An in�nite string is just an

in�nite sequence of letters in Σ: e.g. if Σ = {a, b}, then

abbaabaabbabababbbabababbabbbabab

is an in�nite string. Let us now show that the set of all in�nite sequences over Σ (let's denote
this as Σ∞) is uncountable, i.e. there is no way to lay down all the in�nite sequences as �this
is the �rst sequence, this is the second, etc.�.

The proof works by contradiction, and is due to a technique called diagonalization by
Cantor. Let us assume Σ = {a, b} (the proof is similar for larger alphabets; note that if
there is only one letter in Σ, then there is only one in�nite string). Assume that the set
of all in�nite strings was countable, by way of contradiction, and let f : N → Σ∞ be a 1-1
correspondence.

We can view this function f as the following table, where each row denotes an in�nite
string f(i) for a particular i, and each column represents a particular position in the sequence:

1 2 3 4 . . .

f(1) a b b a . . .
f(2) a b a a . . .
f(3) b a b b . . .
f(4) a b a a . . .
...

...
...

...
...

. . .

5

Now we are going to consider the diagonal word (abba . . .) in the above table, and �ip
it (to get baab . . . for the above table). More formally, we consider the in�nite sequence
s = x1, x2, x3, . . ., where xi = a if f(i)[i] = b and xi = b if f(i)[i] = a. Here f(i)[i] refers to
�the i'th letter in the i'th string�. Intuitively, we are taking the diagonal in�nite word and
�ipping it, changing a's to b's and b's to a's. Then we claim that this in�nite word s does
not occur in the range of f . This is easy to show. For any j ∈ N, note that f(j) 6= s as
f(j)[j] 6= s[j]. In other words, f(j) and s di�er from each other at least at the j'th letter
(as the j'th letter of s was the obtained by �ipping the j'th letter of f(j)). Hence f is not

a 1-1 correspondence between N and Σ∞, and hence Σinfty is uncountable.
The set of in�nite sequences being uncountable has many consequences. For example,

we can use a similar proof as above to show that the set of all real numbers is uncountable.

The set of all languages is uncountable: Note that a language over Σ, L ⊆ Σ∗, can be
seen as an in�nite sequence over {0, 1}. First, we know that Σ∗ is countable� let's say we
order it as w1, w2, w3, Now, let's form an in�nite sequence for a language L as follows:
αL = b1b2b3 . . . where bi = 1 if wi ∈ L, and bi = 0 if wi 6∈ L, for every i ∈ N. It is easy to see
that every language corresponds to a unique in�nite sequence and every in�nite sequence
corresponds to a unique language. Hence there is a 1-1 correspondence between the class of
all languages and the class of all in�nite strings over {0, 1}. Hence the class of all languages
over any alphabet Σ (even a singleton alphabet) is also uncountable.

Programs cannot decide all languages: Let us now consider the class of all C-programs
that take in an input string and output �YES� or �NO�. A C-program hence de�nes a language

over an alphaber (ASCII alphabet).
Also, note that a C-program is, after all, a �nite string (written in ASCII), and since the

set of all �nite strings over an alphabet is countable, the class of all C programs is countable.
Since every C program accepts some language, and since the class of C-programs is

countable, it is obvious that the class of languags accepted by C-programs is also countable.
Since the class of all languages is uncountable, the class of C-programs cannot capture every
language! In other words, there is a language (in fact, uncountably many) that cannot be
decided by any C-program!

Note that this remarkable fact follows simply by counting arguments� no matter how
programs are written, as long as they are of �nite length over a �nite �xed alphabet, they
cannot capture all languages.

Later in the course, we will look at particular problems that no C-program can solve.
This will be more interesting, as it will show that concrete and interesting problems, which
we would like to solve, are unsolvable.

6

	Alphabets, strings, and languages
	Alphabets
	Strings
	Languages
	Languages and set notation
	Why should we care about languages?

	Strings and programs

	Countable and uncountable sets

