
CS322 Fall Semester 2013

Formal Languages and Automata

(CS 322)

Lecturer:
Otfried Cheong

Lecture time: Mon, Wed, Fri 14:00–14:50

Course webpage:
http://otfried-cheong.appspot.com/courses/cs322

Warning: This is really a math course. It will cover concepts
and proofs, and not so many facts.

CS322 Textbook and homeworks

Textbook
Introduction to Theory of Computation by Anil Maheshwari
and Michiel Smid. It is freely available online.

BBS
You must regularly check the course BBS, either on Noah
or on Glassboard (Invitation code: tzhcj).

Homework
Many small homeworks on paper. You will have about one
week for each homework. Start early on your homework,
even if you just read the questions!

Head-banging sessions
Once a week you meet with a small group of students and
a TA to solve some problems in a team of two or three.
Optional at the start of the semester.
Head-banging sessions will be held in Korean.

CS322 Grading and attendance

Grading Policy
Homework (20%), Midterm (30%), Final (40%),
Participation (10%).

Exams or quizzes
We will either have two-hour midterm and final exams, or
three one-hour quizzes during normal class hours.

Attendance
We will take attendance in nearly every class. You can miss
five classes without penalty. This is meant so you can have
doctor’s appointments, interviews, award ceremonies, etc.
No special excuses are given for such events.

CS322 Theory of Computation

About problems solved by computers.

• Which problems can be solved?

• How fast can a problem be solved?

It is impossible to give provable answers to these questions
without a formal, mathematical definition of

problem and computer

Formal languages Automata

Computability

Complexity



CS322 Questions to discuss

• Can we discuss “computation” without talking about
computers, electronics, and physics?

• Can we define (mathematically) a computer?

• Can a computer solve any problem?

• How do you check if a computer program is syntactically
correct?

• How do you design and analyze an automaton?
Automata are used in embedded systems, software
verification (model checking), and string processing.

CS322 A dinosaur course

The first computer science departments were created in the
late 1960s, early 1970s.

Students learnt fortran, assembler, the computer
architecture of a pdp-11, shell sort, etc.

Practically all the material of this course is older than 1970,
and this course has survived practically unchanged (like turtles
and sharks).

CS322 Kurt Gödel

Hilbert and Russel tried to
formalize mathematics (can we
solve any mathematical problem
methodically?)

1906–1978

Incompleteness theorem 1931:
Any sufficiently powerful formal
system contains true statements
that cannot be proven inside the
system.

CS322 Alonzo Church

First notions of computable functions

1903–1995

First language for programs:
• λ-calculus
• formal algebraic language for

computable functions



CS322 Alan Turing

Won World War II.

1912–1954

Mathematically defined a computer
(Turing machine): On computable
numbers, with an application to the
Entscheidunsproblem (1936).

Proved that uncomputable functions
exist (halting problem).

Church-Turing thesis: all real-world computable functions are
Turing-machine computable

CS322 Noam Chomsky

Linguist, introduced the notion of
formal languages by arguing that
generative grammars are at the base
of natural languages.

Defined a hierarchy of formal
languages.

Context-free grammars capture
syntax of programming languages

1928–

American dissident

CS322 Michael Rabin and Dana Scott

Defined finite automata:
Finite automata and their
decision problem (1959)

Introduced nondeterministic
automata and the formalism we
still use today

1931–

1932–

CS322 Reasons for taking this course

• This course is about the fundamental capabilities and
limitations of computers.

• This theory is very much relevant to practice, for example,
in the design of new programming languages, compilers,
string searching, pattern matching, computer security,
artificial intelligence, etc., etc.

• This course helps you to learn problem solving skills.
Theory teaches you how to think, prove, argue, solve
problems, express, and abstract.

• This theory simplifies the complex computers to an
abstract and simple mathematical model, and helps you to
understand them better.

• This course is about rigorously analyzing capabilities and
limitations of systems.


