
CS206 Building a maze

We want to build a maze out of a rectangular grid by removing
some walls.

There should be exactly one path from start to goal cell.

Algorithm:

• Consider all walls in random order.
• If the two cells separated by the wall are not yet connected,

then remove the wall.
• May stop when start and goal have become connected.

To implement this algorithm efficiently, we maintain the
subsets of cells that are connected.

We need two operations:

• Determine whether two cells are in the same subset,
• Replace two subsets by their union

CS206 Union-Find data structure

Given a “universe” U of n elements, we want to maintain a
partitioning of U into disjoint subsets.
At the beginning, each element is in its own subset.
We support two operations:
• find(x): determine which subset contains x
• union(s, t): replace subsets s and t by their union

Applications:
• Building a maze
• Minimum spanning tree
• Nearest Common Ancestor

CS206 Quick-find

Quick-find data structure:
Create an array A with n slots. The value A[i] is the subset
containing element i.

Find takes constant time.

Union takes O(n) time.

CS206 Quick-union

Quick-union data structure:
We organize each subset as a tree.

Union takes constant time.

Find needs to trace references to the root in time O(h), where
h is the height of the tree.

Union by size heuristic: When performing a union, make the
smaller tree a subtree of the root of the larger tree.

This heuristic guarantees that a tree of size m has
height O(logm).



CS206 Path compression

Path compression heuristic:
During a find operation, we make all the nodes found children
of the root.

It is surprising that find should modify the tree. The idea is
that this will improve the running time of future find
operations.

CS206 Time complexity

But F (n, n) is not a linear function, and for n→∞ we have
F (n, n)/n→∞.

The true time complexity is F (m,n) = O(n+mα(m+ n)),
where α(m) is the inverse of Ackermann’s function. It grows
very very slowly.

Theorem: If n < 22
22

2

, then F (m,n) ≤ 4m+ 4n.

Let F (m,n) be the total number of parent links followed by m
find operations (in a sequence of union and find operations) on
a universe of size n.

CS206 Analysis of path compression

When we create a link from u to v during a union, we assign
rank r(u) = blog n(u)c to u, where n(u) is the number of
nodes in the tree with root u.

Lemma: If v is the parent of u at some time and v is not a
root, then r(v) > r(u).

Lemma: The number of nodes with rank r(u) = s is at
most n/2s.

Proof: When the rank is assigned, u is the root of a subtree
with at least 2s nodes.

After the union, these nodes are part of a tree with at least
2s+1 nodes, and can never be counted again when assigning
rank s.

CS206 Counting acorns

When we assign the rank, we also give some acorns to u:

Group Ranks Acorns Total acorns
0 0 0 0
1 1. . . 4 4− r(u) ≤ 2.125n
2 5. . . 16 12 ≤ 0.75n
3 17. . . 65536 65536 ≤ n

A find operation follows at most three links between different
groups, and one link to the root of the subtree ⇒ 4m links.

Following a link from u to v in the same group is paid with an
acorn at u.

F (m,n) ≤ 4m+ 4n.

The total number of acorns given to nodes is ≤ 4n.


