
Algorithms Lecture 5: Dynamic Programming [Fa’10]

Those who cannot remember the past are doomed to repeat it.

— George Santayana, The Life of Reason, Book I:
Introduction and Reason in Common Sense (1905)

The 1950s were not good years for mathematical research. We had a very interesting gentleman
in Washington named Wilson. He was secretary of Defense, and he actually had a pathological
fear and hatred of the word ‘research’. I’m not using the term lightly; I’m using it precisely. His
face would suffuse, he would turn red, and he would get violent if people used the term ‘research’
in his presence. You can imagine how he felt, then, about the term ‘mathematical’. The RAND
Corporation was employed by the Air Force, and the Air Force had Wilson as its boss, essentially.
Hence, I felt I had to do something to shield Wilson and the Air Force from the fact that I was really
doing mathematics inside the RAND Corporation. What title, what name, could I choose?

— Richard Bellman, on the origin of his term ‘dynamic programming’ (1984)

If we all listened to the professor, we may be all looking for professor jobs.

— Pittsburgh Steelers’ head coach Bill Cowher, responding to
David Romer’s dynamic-programming analysis of football strategy (2003)

5 Dynamic Programming

5.1 Fibonacci Numbers

5.1.1 Recursive Definitions Are Recursive Algorithms

The Fibonacci numbers Fn, named after Leonardo Fibonacci Pisano1, the mathematician who popularized
‘algorism’ in Europe in the 13th century, are defined as follows: F0 = 0, F1 = 1, and Fn = Fn−1+ Fn−2 for
all n≥ 2. The recursive definition of Fibonacci numbers immediately gives us a recursive algorithm for
computing them:

RECFIBO(n):
if (n< 2)

return n
else

return RECFIBO(n− 1) +RECFIBO(n− 2)

How long does this algorithm take? Except for the recursive calls, the entire algorithm requires only
a constant number of steps: one comparison and possibly one addition. If T (n) represents the number
of recursive calls to RECFIBO, we have the recurrence

T (0) = 1, T (1) = 1, T (n) = T (n− 1) + T (n− 2) + 1.

This looks an awful lot like the recurrence for Fibonacci numbers! The annihilator method gives us an
asymptotic bound of Θ(φn), where φ = (

p
5+ 1)/2 ≈ 1.61803398875, the so-called golden ratio, is

the largest root of the polynomial r2− r − 1. But it’s fairly easy to prove (hint, hint) the exact solution
T(n) = 2Fn+1 − 1. In other words, computing Fn using this algorithm takes more than twice as many
steps as just counting to Fn!

Another way to see this is that the RECFIBO is building a big binary tree of additions, with nothing
but zeros and ones at the leaves. Since the eventual output is Fn, our algorithm must call RECRIBO(1)
(which returns 1) exactly Fn times. A quick inductive argument implies that RECFIBO(0) is called exactly
Fn−1 times. Thus, the recursion tree has Fn+ Fn−1 = Fn+1 leaves, and therefore, because it’s a full binary
tree, it must have 2Fn+1− 1 nodes.

1literally, “Leonardo, son of Bonacci, of Pisa”
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5.1.2 Memo(r)ization: Remember Everything

The obvious reason for the recursive algorithm’s lack of speed is that it computes the same Fi-
bonacci numbers over and over and over. A single call to RECURSIVEFIBO(n) results in one recursive
call to RECURSIVEFIBO(n − 1), two recursive calls to RECURSIVEFIBO(n − 2), three recursive calls to
RECURSIVEFIBO(n− 3), five recursive calls to RECURSIVEFIBO(n− 4), and in general, Fk−1 recursive calls
to RECURSIVEFIBO(n− k), for any 0≤ k < n. For each call, we’re recomputing some Fibonacci number
from scratch.

We can speed up our recursive algorithm considerably just by writing down the results of our
recursive calls and looking them up again if we need them later. This process was dubbed memoization
by Richard Michie in the late 1960s.2

MEMFIBO(n):
if (n< 2)

return n
else

if F[n] is undefined
F[n]←MEMFIBO(n− 1) +MEMFIBO(n− 2)

return F[n]

Memoization clearly decreases the running time of the algorithm, but by how much? If we actually
trace through the recursive calls made by MEMFIBO, we find that the array F[ ] is filled from the bottom
up: first F[2], then F[3], and so on, up to F[n]. This pattern can be verified by induction: Each
entry F[i] is filled only after its predecessor F[i − 1]. If we ignore the time spent in recursive calls, it
requires only constant time to evaluate the recurrence for each Fibonacci number Fi . But by design, the
recurrence for Fi is evaluated only once! We conclude that MEMFIBO performs only O(n) additions, an
exponential improvement over the naïve recursive algorithm!

5.1.3 Dynamic Programming: Fill Deliberately

But once we see how the array F[ ] is filled, we can replace the recursion with a simple loop that
intentionally fills the array in order, instead of relying on the complicated recursion to do it for us
‘accidentally’.

ITERFIBO(n):
F[0]← 0
F[1]← 1
for i← 2 to n

F[i]← F[i− 1] + F[i− 2]
return F[n]

Now the time analysis is immediate: ITERFIBO clearly uses O(n) additions and stores O(n) integers.
This gives us our first explicit dynamic programming algorithm. The dynamic programming paradigm

was developed by Richard Bellman in the mid-1950s, while working at the RAND Corporation. Bellman
deliberately chose the name ‘dynamic programming’ to hide the mathematical character of his work
from his military bosses, who were actively hostile toward anything resembling mathematical research.
Here, the word ‘programming’ does not refer to writing code, but rather to the older sense of planning
or scheduling, typically by filling in a table. For example, sports programs and theater programs are
schedules of important events (with ads); television programming involves filling each available time
slot with a show (and ads); degree programs are schedules of classes to be taken (with ads). The Air

2“My name is Elmer J. Fudd, millionaire. I own a mansion and a yacht.”
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Force funded Bellman and others to develop methods for constructing training and logistics schedules,
or as they called them, ‘programs’. The word ‘dynamic’ is meant to suggest that the table is filled in over
time, rather than all at once (as in ‘linear programming’, which we will see later in the semester).3

5.1.4 Don’t Remember Everything After All

In many dynamic programming algorithms, it is not necessary to retain all intermediate results through
the entire computation. For example, we can significantly reduce the space requirements of our algorithm
ITERFIBO by maintaining only the two newest elements of the array:

ITERFIBO2(n):
prev← 1
curr← 0
for i← 1 to n

next← curr+ prev
prev← curr
curr← next

return curr

(This algorithm uses the non-standard but perfectly consistent base case F−1 = 1 so that ITERFIBO2(0)
returns the correct value 0.)

5.1.5 Faster! Faster!

Even this algorithm can be improved further, using the following wonderful fact:
�

0 1
1 1

��

x
y

�

=

�

y
x + y

�

In other words, multiplying a two-dimensional vector by the matrix
� 0 1

1 1
�

does exactly the same thing
as one iteration of the inner loop of ITERFIBO2. This might lead us to believe that multiplying by the
matrix n times is the same as iterating the loop n times:

�

0 1
1 1

�n�
1
0

�

=

�

Fn−1
Fn

�

.

A quick inductive argument proves this fact. So if we want the nth Fibonacci number, we just have to
compute the nth power of the matrix

� 0 1
1 1
�

. If we use repeated squaring, computing the nth power
of something requires only O(log n) multiplications. In this case, that means O(log n) 2× 2 matrix
multiplications, each of which reduces to a constant number of integer multiplications and additions.
Thus, we can compute Fn in only O(logn) integer arithmetic operations.

This is an exponential speedup over the standard iterative algorithm, which was already an exponen-
tial speedup over our original recursive algorithm. Right?

5.1.6 Whoa! Not so fast!

Well, not exactly. Fibonacci numbers grow exponentially fast. The nth Fibonacci number is approximately
n log10φ ≈ n/5 decimal digits long, or n log2φ ≈ 2n/3 bits. So we can’t possibly compute Fn in
logarithmic time — we need Ω(n) time just to write down the answer!

3“I thought dynamic programming was a good name. It was something not even a Congressman could object to. So I used
it as an umbrella for my activities.”
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The way out of this apparent paradox is to observe that we can’t perform arbitrary-precision
arithmetic in constant time. Multiplying two n-digit numbers using fast Fourier transforms (described
in a different lecture note) requires O(n log n log log n) time. Thus, the matrix-based algorithm’s actual
running time obeys the recurrence T(n) = T(bn/2c) + O(n log n log log n), which solves to T(n) =
O(n logn log logn) using recursion trees.

Is this slower than our “linear-time” iterative algorithm? No! Addition isn’t free, either. Adding two
n-digit numbers takes O(n) time, so the running time of the iterative algorithm is O(n2). (Do you see
why?) Our matrix algorithm really is faster than our iterative algorithm, but not exponentially faster.

In the original recursive algorithm, the extra cost of arbitrary-precision arithmetic is overwhelmed
by the huge number of recursive calls. The correct recurrence is T (n) = T (n− 1) + T (n− 2) +O(n), for
which the annihilator method still implies the solution T (n) = O(φn).

5.2 Longest Increasing Subsequence

In a previous lecture, we developed a recursive algorithm to find the length of the longest increasing
subsequence of a given sequence of numbers. Given an array A[1 .. n], the length of the longest
increasing subsequences is computed by the function call LISBIGGER(−∞, A[1 .. n]), where LISBIGGER is
the following recursive algorithm:

LISBIGGER(prev, A[1 .. n]):
if n= 0

return 0
else

max← LISBIGGER(prev, A[2 .. n])
if A[1]> prev

L← 1+ LISBIGGER(A[1], A[2 .. n])
if L >max

max← L
return max

We can simplify our notation slightly with two simple observations. First, the input variable prev is
always either −∞ or an element of the input array. Second, the second argument of LISBIGGER is always
a suffix of the original input array. If we add a new sentinel value A[0] =−∞ to the input array, we can
identify any recursive subproblem with two array indices.

Thus, we can rewrite the recursive algorithm as follows. Add the sentinel value A[0] = −∞. Let
LIS(i, j) denote the length of the longest increasing subsequence of A[ j .. n] with all elements larger
than A[i]. Our goal is to compute LIS(0, 1). For all i < j, we have

LIS(i, j) =







0 if j > n

LIS(i, j+ 1) if A[i]≥ A[ j]
max{LIS(i, j+ 1), 1+ LIS( j, j+ 1)} otherwise

Because each recursive subproblem can be identified by two indices i and j, we can store the
intermediate values in a two-dimensional array LIS[0 ..n, 1 .. n]. Since there are O(n2) entries in the
table, our memoized algorithm uses O(n2) space.4 Each entry in the table can be computed in O(1)
time once we know its predecessors, so our memoized algorithm runs in O(n2) time.

4In fact, we only need half of this array, because we always have i < j. But even if we cared about constant factors in this
class (we don’t), this would be the wrong time to worry about them. The first order of business is to find an algorithm that
actually works; once we have that, then we can think about optimizing it.

4



Algorithms Lecture 5: Dynamic Programming [Fa’10]

It’s not immediately clear what order the recursive algorithm fills the rest of the table; all we can tell
from the recurrence is that each entry LIS[i, j] is filled in after the entries LIS[i, j+1] and LIS[ j, j+1]
in the next columns. But just this partial information is enough to give us an explicit evaluation order.
If we fill in our table one column at a time, from right to left, then whenever we reach an entry in the
table, the entries it depends on are already available.

i

j

Dependencies in the memoization table for longest increasing subsequence, and a legal evaluation order

Finally, putting everything together, we obtain the following dynamic programming algorithm:

LIS(A[1 .. n]):
A[0]←−∞ 〈〈Add a sentinel〉〉
for i← 0 to n 〈〈Base cases〉〉

LIS[i, n+ 1]← 0

for j← n downto 1
for i← 0 to j− 1

if A[i]≥ A[ j]
LIS[i, j]← LIS[i, j+ 1]

else
LIS[i, j]←max{LIS[i, j+ 1], 1+ LIS[ j, j+ 1]}

return LIS[0, 1]

As expected, the algorithm clearly uses O(n2) time and space. However, we can reduce the space to
O(n) by only maintaining the two most recent columns of the table, LIS[·, j] and LIS[·, j+ 1].5

This is not the only recursive strategy we could use for computing longest increasing subsequences
efficiently. Here is another recurrence that gives us the O(n) space bound for free. Let LIS′(i) denote
the length of the longest increasing subsequence of A[i .. n] that starts with A[i]. Our goal is to compute
LIS′(0)− 1; we subtract 1 to ignore the sentinel value −∞. To define LIS′(i) recursively, we only need
to specify the second element in subsequence; the Recursion Fairy will do the rest.

LIS′(i) = 1+max
�

LIS′( j) | j > i and A[ j]> A[i]
	

Here, I’m assuming that max∅ = 0, so that the base case is L′(n) = 1 falls out of the recurrence
automatically. Memoizing this recurrence requires only O(n) space, and the resulting algorithm runs in
O(n2) time. To transform this memoized recurrence into a dynamic programming algorithm, we only
need to guarantee that LIS′( j) is computed before LIS′(i) whenever i < j.

5See, I told you not to worry about constant factors yet!
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LIS2(A[1 .. n]):
A[0] =−∞ 〈〈Add a sentinel〉〉

for i← n downto 0
LIS′[i]← 1
for j← i+ 1 to n

if A[ j]> A[i] and 1+ LIS′[ j]> LIS′[i]
LIS′[i]← 1+ LIS′[ j]

return LIS′[0]− 1 〈〈Don’t count the sentinel〉〉

5.3 The Pattern: Smart Recursion

In a nutshell, dynamic programming is recursion without repetition. Dynamic programming algorithms
store the solutions of intermediate subproblems, often but not always in some kind of array or table.
Many algorithms students make the mistake of focusing on the table (because tables are easy and
familiar) instead of the much more important (and difficult) task of finding a correct recurrence. As
long as we memoize the correct recurrence, an explicit table isn’t really necessary, but if the recursion is
incorrect, nothing works.

Dynamic programming is not about filling in tables.
It’s about smart recursion!

Dynamic programming algorithms are almost always developed in two distinct stages.

1. Formulate the problem recursively. Write down a recursive formula or algorithm for the whole
problem in terms of the answers to smaller subproblems. This is the hard part.

2. Build solutions to your recurrence from the bottom up. Write an algorithm that starts with
the base cases of your recurrence and works its way up to the final solution, by considering
intermediate subproblems in the correct order. This stage can be broken down into several smaller,
relatively mechanical steps:

(a) Identify the subproblems. What are all the different ways can your recursive algorithm call
itself, starting with some initial input? For example, the argument to RECFIBO is always an
integer between 0 and n.

(b) Analyze space and running time. The number of possible distinct subproblems determines
the space complexity of your memoized algorithm. To compute the time complexity, add up
the running times of all possible subproblems, ignoring the recursive calls. For example, if
we already know Fi−1 and Fi−2, we can compute Fi in O(1) time, so computing the first n
Fibonacci numbers takes O(n) time.

(c) Choose a data structure to memoize intermediate results. For most problems, each
recursive subproblem can be identified by a few integers, so you can use a multidimensional
array. For some problems, however, a more complicated data structure is required.

(d) Identify dependencies between subproblems. Except for the base cases, every recursive
subproblem depends on other subproblems—which ones? Draw a picture of your data
structure, pick a generic element, and draw arrows from each of the other elements it
depends on. Then formalize your picture.

(e) Find a good evaluation order. Order the subproblems so that each subproblem comes after
the subproblems it depends on. Typically, this means you should consider the base cases

6
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first, then the subproblems that depends only on base cases, and so on. More formally, the
dependencies you identified in the previous step define a partial order over the subproblems;
in this step, you need to find a linear extension of that partial order. Be careful!

(f) Write down the algorithm. You know what order to consider the subproblems, and you
know how to solve each subproblem. So do that! If your data structure is an array, this
usually means writing a few nested for-loops around your original recurrence. You don’t
need to do this on homework or exams.

Of course, you have to prove that each of these steps is correct. If your recurrence is wrong, or if you try
to build up answers in the wrong order, your algorithm won’t work!

5.4 Warning: Greed is Stupid

If we’re very very very very lucky, we can bypass all the recurrences and tables and so forth, and solve the
problem using a greedy algorithm. The general greedy strategy is look for the best first step, take it, and
then continue. While this approach seems very natural, it almost never works; optimization problems
that can be solved correctly by a greedy algorithm are very rare. Nevertheless, for many problems that
should be solved by dynamic programming, many students’ first intuition is to apply a greedy strategy.

For example, a greedy algorithm for the edit distance problem might look for the longest common
substring of the two strings, match up those substrings (since those substitutions don’t cost anything),
and then recursively look for the edit distances between the left halves and right halves of the strings.
If there is no common substring—that is, if the two strings have no characters in common—the edit
distance is clearly the length of the larger string. If this sounds like a stupid hack to you, pat yourself on
the back. It isn’t even close to the correct solution.

Everyone should tattoo the following sentence on the back of their hands, right under all the rules
about logarithms and big-Oh notation:

Greedy algorithms never work!
Use dynamic programming instead!

What, never?
No, never!
What, never?
Well. . . hardly ever.6

A different lecture note describes the effort required to prove that greedy algorithms are correct, in
the rare instances when they are. You will not receive any credit for any greedy algorithm for any
problem in this class without a formal proof of correctness. We’ll push through the formal proofs
for several greedy algorithms later in the semester.

5.5 Edit Distance

The edit distance between two words—sometimes also called the Levenshtein distance—is the minimum
number of letter insertions, letter deletions, and letter substitutions required to transform one word into
another. For example, the edit distance between FOOD and MONEY is at most four:

6Greedy methods hardly ever work! So give three cheers, and one cheer more, for the hardy Captain of the Pinafore! Then
give three cheers, and one cheer more, for the Captain of the Pinafore!
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FOOD → MOOD → MON
∧
D → MONED → MONEY

A better way to display this editing process is to place the words one above the other, with a gap in
the first word for every insertion, and a gap in the second word for every deletion. Columns with two
different characters correspond to substitutions. Thus, the number of editing steps is just the number of
columns that don’t contain the same character twice.

F O O D

M O N E Y

It’s fairly obvious that you can’t get from FOOD to MONEY in three steps, so their edit distance is exactly
four. Unfortunately, this is not so easy in general. Here’s a longer example, showing that the distance
between ALGORITHM and ALTRUISTIC is at most six. Is this optimal?

A L G O R I T H M

A L T R U I S T I C

To develop a dynamic programming algorithm to compute the edit distance between two strings,
we first need to develop a recursive definition. Our gap representation for edit sequences has a crucial
“optimal substructure” property. Suppose we have the gap representation for the shortest edit sequence
for two strings. If we remove the last column, the remaining columns must represent the shortest
edit sequence for the remaining substrings. We can easily prove this by contradiction. If the substrings
had a shorter edit sequence, we could just glue the last column back on and get a shorter edit sequence
for the original strings. Once we figure out what should go in the last column, the Recursion Fairy will
magically give us the rest of the optimal gap representation.

So let’s recursively define the edit distance between two strings A[1 .. m] and B[1 .. n], which we
denote by Edit(A[1 .. m], B[1 .. n]). If neither string is empty, there are three possibilities for the last
column in the shortest edit sequence:

• Insertion: The last entry in the bottom row is empty. In this case, the edit distance is equal
to Edit(A[1 .. m− 1], B[1 .. n]) + 1. The +1 is the cost of the final insertion, and the recursive
expression gives the minimum cost for the other columns.

• Deletion: The last entry in the top row is empty. In this case, the edit distance is equal to
Edit(A[1 .. m], B[1 .. n − 1]) + 1. The +1 is the cost of the final deletion, and the recursive
expression gives the minimum cost for the other columns.

• Substitution: Both rows have characters in the last column. If the characters are the same, the
substitution is free, so the edit distance is equal to Edit(A[1 .. m−1], B[1 .. n−1]). If the characters
are different, then the edit distance is equal to Edit(A[1 .. m− 1], B[1 .. n− 1]) + 1.

The edit distance between A and B is the smallest of these three possibilities:7

Edit(A[1 .. m], B[1 .. n]) =min







Edit(A[1 .. m− 1], B[1 .. n]) + 1

Edit(A[1 .. m], B[1 .. n− 1]) + 1

Edit(A[1 .. m− 1], B[1 .. n− 1]) +
�

A[m] 6= B[n]
�







7Once again, I’m using Iverson’s bracket notation
�

P
�

to denote the indicator variable for the logical proposition P, which
has value 1 if P is true and 0 if P is false.
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This recurrence has two easy base cases. The only way to convert the empty string into a string of n
characters is by performing n insertions. Similarly, the only way to convert a string of m characters into
the empty string is with m deletions, Thus, if ε denotes the empty string, we have

Edit(A[1 .. m],ε) = m, Edit(ε, B[1 .. n]) = n.

Both of these expressions imply the trivial base case Edit(ε,ε) = 0.
Now notice that the arguments to our recursive subproblems are always prefixes of the original

strings A and B. Thus, we can simplify our notation considerably by using the lengths of the prefixes,
instead of the prefixes themselves, as the arguments to our recursive function. So let’s write Edit(i, j) as
shorthand for Edit(A[1 .. i], B[1 .. j]). This function satisfies the following recurrence:

Edit(i, j) =























i if j = 0

j if i = 0

min







Edit(i− 1, j) + 1,

Edit(i, j− 1) + 1,

Edit(i− 1, j− 1) +
�

A[i] 6= B[ j]
�







otherwise

The edit distance between the original strings A and B is just Edit(m, n). This recurrence translates
directly into a recursive algorithm; the precise running time is not obvious, but it’s clearly exponential in
m and n. Fortunately, we don’t care about the precise running time of the recursive algorithm. The
recursive running time wouldn’t tell us anything about our eventual dynamic programming algorithm,
so we’re just not going to bother computing it.8

Because each recursive subproblem can be identified by two indices i and j, we can memoize
intermediate values in a two-dimensional array Edit[0 .. m, 0 .. n]. Note that the index ranges start
at zero to accommodate the base cases. Since there are Θ(mn) entries in the table, our memoized
algorithm uses Θ(mn) space. Since each entry in the table can be computed in Θ(1) time once we know
its predecessors, our memoized algorithm runs in Θ(mn) time.

i

j

Dependencies in the memoization table for edit distance, and a legal evaluation order

8In case you’re curious, the running time of the unmemoized recursive algorithm obeys the following recurrence:

T (m, n) =

(

O(1) if n= 0 or m= 0,

T (m, n− 1) + T (m− 1, n) + T (n− 1, m− 1) +O(1) otherwise.

I don’t know of a general closed-form solution for this mess, but we can derive an upper bound by defining a new function

T ′(N) = max
n+m=N

T (n, m) =

(

O(1) if N = 0,

2T (N − 1) + T (N − 2) +O(1) otherwise.

The annihilator method implies that T ′(N) = O((1+
p

2)N ). Thus, the running time of our recursive edit-distance algorithm is
at most T ′(n+m) = O((1+

p
2)n+m).
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Each entry Edit[i, j] depends only on its three neighboring entries Edit[i−1, j]+1, Edit[i, j−1]+1,
and Edit[i − 1, j − 1]. If we fill in our table in the standard row-major order—row by row from top
down, each row from left to right—then whenever we reach an entry in the table, the entries it depends
on are already available. Putting everything together, we obtain the following dynamic programming
algorithm:

EDITDISTANCE(A[1 .. m], B[1 .. n]):
for j← 1 to n

Edit[0, j]← j

for i← 1 to m
Edit[i, 0]← i
for j← 1 to n

if A[i] = B[ j]
Edit[i, j]←min

�

Edit[i− 1, j] + 1, Edit[i, j− 1] + 1, Edit[i− 1, j− 1]
	

else
Edit[i, j]←min

�

Edit[i− 1, j] + 1, Edit[i, j− 1] + 1, Edit[i− 1, j− 1] + 1
	

return Edit[m, n]

Here’s the resulting table for ALGORITHM → ALTRUISTIC. Bold numbers indicate places where
characters in the two strings are equal. The arrows represent the predecessor(s) that actually define
each entry. Each direction of arrow corresponds to a different edit operation: horizontal=deletion,
vertical=insertion, and diagonal=substitution. Bold diagonal arrows indicate “free” substitutions of
a letter for itself. Any path of arrows from the top left corner to the bottom right corner of this table
represents an optimal edit sequence between the two strings. (There can be many such paths.) Moreover,
since we can compute these arrows in a post-processing phase from the values stored in the table, we
can reconstruct the actual optimal editing sequence in O(n+m) additional time.

A L G O R I T H M

0→1→2→3→4→5→6→7→8→9
↓↘↘↘↘↘↘↘↘↘

A 1 0→1→2→3→4→5→6→7→8
↓ ↓↘↘↘↘↘↘↘↘↘

L 2 1 0→1→2→3→4→5→6→7
↓ ↓ ↓↘ ↘ ↘ ↘ ↘↘↘↘↘↘↘↘↘

T 3 2 1 1→2→3→4→4→5→6
↓ ↓ ↓ ↓↘ ↘↘↘↘↘↘↘↘↘ ↘ ↘

R 4 3 2 2 2 2→3→4→5→6
↓ ↓ ↓↘↓↘↓↘↓↘ ↘ ↘ ↘

U 5 4 3 3 3 3 3→4→5→6
↓ ↓ ↓↘↓↘↓↘↓↘↘↘↘↘↘↘↘↘ ↘ ↘ ↘

I 6 5 4 4 4 4 3→4→5→6
↓ ↓ ↓↘↓↘↓↘↓ ↓↘ ↘ ↘

S 7 6 5 5 5 5 4 4 5 6
↓ ↓ ↓↘↓↘↓↘↓ ↓↘↘↘↘↘↘↘↘↘ ↘ ↘

T 8 7 6 6 6 6 5 4→5→6
↓ ↓ ↓↘↓↘↓↘↓↘↘↘↘↘↘↘↘↘↓ ↓↘ ↘

I 9 8 7 7 7 7 6 5 5→6
↓ ↓ ↓↘↓↘↓↘↓ ↓ ↓↘↓↘

C 10 9 8 8 8 8 7 6 6 6

The edit distance between ALGORITHM and ALTRUISTIC is indeed six. There are three paths through
this table from the top left to the bottom right, so there are three optimal edit sequences:

10



Algorithms Lecture 5: Dynamic Programming [Fa’10]

A L G O R I T H M

A L T R U I S T I C

A L G O R I T H M

A L T R U I S T I C

A L G O R I T H M

A L T R U I S T I C

5.6 Optimal Binary Search Trees

In an earlier lecture, we developed a recursive algorithm for the optimal binary search tree problem.
We are given a sorted array A[1 .. n] of search keys and an array f [1 .. n] of frequency counts, where
f [i] is the number of searches to A[i]. Our task is to construct a binary search tree for that set such that
the total cost of all the searches is as small as possible. We developed the following recurrence for this
problem:

OptCost( f [1 .. n]) = min
1≤r≤n

(

OptCost( f [1 .. r − 1]) +
n
∑

i=1

f [i] + OptCost( f [r + 1 .. n])

)

To put this recurrence in more standard form, fix the frequency array f , and let OptCost(i, j) denote the
total search time in the optimal search tree for the subarray A[i .. j]. To simplify notation a bit, let F(i, j)
denote the total frequency count for all the keys in the interval A[i .. j]:

F(i, j) :=
j
∑

k=i

f [k]

We can now write

OptCost(i, j) =

(

0 if j < i

F(i, j) + min
i≤r≤ j

�

OptCost(i, r − 1) +OptCost(r + 1, j)
�

otherwise

The base case might look a little weird, but all it means is that the total cost for searching an empty set
of keys is zero.

The algorithm will be somewhat simpler and more efficient if we precompute all possible values of
F(i, j) and store them in an array. Computing each value F(i, j) using a separate for-loop would O(n3)
time. A better approach is to turn the recurrence

F(i, j) =

(

f [i] if i = j

F(i, j− 1) + f [ j] otherwise

into the following O(n2)-time dynamic programming algorithm:

INITF( f [1 .. n]):
for i← 1 to n

F[i, i− 1]← 0
for j← i to n

F[i, j]← F[i, j− 1] + f [i]

11
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This will be used as an initialization subroutine in our final algorithm.
So now let’s compute the optimal search tree cost OptCost(1, n) from the bottom up. We can store

all intermediate results in a table OptCost[1 .. n, 0 .. n]. Only the entries OptCost[i, j] with j ≥ i − 1 will
actually be used. The base case of the recurrence tells us that any entry of the form OptCost[i, i− 1] can
immediately be set to 0. For any other entry OptCost[i, j], we can use the following algorithm fragment,
which comes directly from the recurrence:

COMPUTEOPTCOST(i, j):
OptCost[i, j]←∞
for r ← i to j

tmp← OptCost[i, r − 1] +OptCost[r + 1, j]
if OptCost[i, j]> tmp

OptCost[i, j]← tmp
OptCost[i, j]← OptCost[i, j] + F[i, j]

The only question left is what order to fill in the table.
Each entry OptCost[i, j] depends on all entries OptCost[i, r−1] and OptCost[r+1, j] with i ≤ k ≤ j.

In other words, every entry in the table depends on all the entries directly to the left or directly below.
In order to fill the table efficiently, we must choose an order that computes all those entries before
OptCost[i, j]. There are at least three different orders that satisfy this constraint. The one that occurs to
most people first is to scan through the table one diagonal at a time, starting with the trivial base cases
OptCost[i, i− 1]. The complete algorithm looks like this:

OPTIMALSEARCHTREE( f [1 .. n]):
INITF( f [1 .. n])
for i← 1 to n

OptCost[i, i− 1]← 0
for d ← 0 to n− 1

for i← 1 to n− d
COMPUTEOPTCOST(i, i+ d)

return OptCost[1, n]

We could also traverse the array row by row from the bottom up, traversing each row from left to
right, or column by column from left to right, traversing each columns from the bottom up. These two
orders give us the following algorithms:

OPTIMALSEARCHTREE2( f [1 .. n]):
INITF( f [1 .. n])
for i← n downto 1

OptCost[i, i− 1]← 0
for j← i to n

COMPUTEOPTCOST(i, j)
return OptCost[1, n]

OPTIMALSEARCHTREE3( f [1 .. n]):
INITF( f [1 .. n])
for j← 0 to n

OptCost[ j+ 1, j]← 0
for i← j downto 1

COMPUTEOPTCOST(i, j)
return OptCost[1, n]

Three different evaluation orders for the table OptCost[i, j].

12
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No matter which of these orders we actually use, the resulting algorithm runs in Θ(n3) time and
uses Θ(n2) space.

We could have predicted these space and time bounds directly from the original recurrence.

OptCost(i, j) =

(

0 if j = i− i

F(i, j) + min
i≤r≤ j

�

OptCost(i, r − 1) +OptCost(r + 1, j)
�

otherwise

First, the function has two arguments, each of which can take on any value between 1 and n, so we
probably need a table of size O(n2). Next, there are three variables in the recurrence (i, j, and r), each
of which can take any value between 1 and n, so it should take us O(n3) time to fill the table.

5.7 Dynamic Programming on Trees

So far, all of our dynamic programming example use a multidimensional array to store the results of
recursive subproblems. However, as the next example shows, this is not always the most appropriate
date structure to use.

A independent set in a graph is a subset of the vertices that have no edges between them. Finding
the largest independent set in an arbitrary graph is extremely hard; in fact, this is one of the canonical
NP-hard problems described in another lecture note. But from some special cases of graphs, we can find
the largest independent set efficiently. In particular, when the input graph is a tree (a connected and
acyclic graph) with n vertices, we can compute the largest independent set in O(n) time.

In the recursion notes, we saw a recursive algorithm for computing the size of the largest independent
set in an arbitrary graph:

MAXIMUMINDSETSIZE(G):
if G =∅

return 0

v← any node in G
withv← 1+MAXIMUMINDSETSIZE(G \ N(v))
withoutv←MAXIMUMINDSETSIZE(G \ {v})
return max{withv, withoutv}.

Here, N(v) denotes the neighborhood of v: the set containing v and all of its neighbors. As we observed
in the other lecture notes, this algorithm has a worst-case running time of O(2n poly(n)), where n is the
number of vertices in the input graph.

Now suppose we require that the input graph is a tree; we will call this tree T instead of G from now
on. We need to make a slight change to the algorithm to make it truly recursive. The subgraphs T \ {v}
and T \ N(v) are forests, which may have more than one component. But the largest independent set
in a disconnected graph is just the union of the largest independent sets in its components, so we can
separately consider each tree in these forests. Fortunately, this has the added benefit of making the
recursive algorithm more efficient, especially if we can choose the node v such that the trees are all
significantly smaller than T . Here is the modified algorithm:
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MAXIMUMINDSETSIZE(T ):
if T =∅

return 0
v← any node in T
withv← 1
for each tree T ′ in T \ N(v)

withv← withv+MAXIMUMINDSETSIZE(T ′)
withoutv← 0
for each tree T ′ in T \ {v}

withoutv← withoutv+MAXIMUMINDSETSIZE(T ′)
return max{withv, withoutv}.

Now let’s try to memoize this algorithm. Each recursive subproblem considers a subtree (that is, a
connected subgraph) of the original tree T . Unfortunately, a single tree T can have exponentially many
subtrees, so we seem to be doomed from the start!

Fortunately, there’s a degree of freedom that we have not yet exploited: We get to choose the vertex v.
We need a recipe—an algorithm!—for choosing v in each subproblem that limits the number of different
subproblems the algorithm considers. To make this work, we impose some additional structure on the
original input tree. Specifically, we declare one of the vertices of T to be the root, and we orient all the
edges of T away from that root. Then we let v be the root of the input tree; this choice guarantees that
each recursive subproblem considers a rooted subtree of T . Each vertex in T is the root of exactly one
subtree, so now the number of distinct subproblems is exactly n. We can further simplify the algorithm
by only passing a single node instead of the entire subtree:

MAXIMUMINDSETSIZE(v):
withv← 1
for each grandchild x of v

withv← withv+MAXIMUMINDSETSIZE(x)
withoutv← 0
for each child w of v

withoutv← withoutv+MAXIMUMINDSETSIZE(w)
return max{withv, withoutv}.

What data structure should we use to store intermediate results? The most natural choice is the tree
itself! Specifically, for each node v, we store the result of MAXIMUMINDSETSIZE(v) in a new field v. MIS.
(We could use an array, but then we’d have to add a new field to each node anyway, pointing to the
corresponding array entry. Why bother?)

What’s the running time of the algorithm? The non-recursive time associated with each node v is
proportional to the number of children and grandchildren of v; this number can be very different from
one vertex to the next. But we can turn the analysis around: Each vertex contributes a constant amount
of time to its parent and its grandparent! Since each vertex has at most one parent and at most one
grandparent, the total running time is O(n).

What’s a good order to consider the subproblems? The subproblem associated with any node v
depends on the subproblems associated with the children and grandchildren of v. So we can visit the
nodes in any order, provided that all children are visited before their parent. In particular, we can use a
straightforward post-order traversal.

Here is the resulting dynamic programming algorithm. Yes, it’s still recursive. I’ve swapped the
evaluation of the with-v and without-v cases; we need to visit the kids first anyway, so why not consider
the subproblem that depends directly on the kids first?
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MAXIMUMINDSETSIZE(v):
withoutv← 0
for each child w of v

withoutv← withoutv+MAXIMUMINDSETSIZE(w)
withv← 1
for each grandchild x of v

withv← withv+ x . MIS
v. MIS←max{withv, withoutv}
return v. MIS

Another option is to store two values for each rooted subtree: the size of the largest independent set
that includes the root, and the size of the largest independent set that excludes the root. This gives us an
even simpler algorithm, with the same O(n) running time.

MAXIMUMINDSETSIZE(v):
v. MISno← 0
v. MISyes← 1
for each child w of v

v. MISno← v. MISno+MAXIMUMINDSETSIZE(w)
v. MISyes← v. MISyes+w. MISno

return max{v. MISyes, v. MISno}

Exercises

1. Suppose you are given an array A[1 .. n] of numbers, which may be positive, negative, or zero.

(a) Describe and analyze an algorithm that finds the largest sum of of elements in a contiguous
subarray A[i .. j]. For example, if the array contains the numbers (−6,12,−7,0,14,−7,5),
then the largest sum of any contiguous subarray is 19= 12− 7+ 0+ 14.

−6 12 −7 0 14 −7 5
︸ ︷︷ ︸

19

(b) Describe and analyze an algorithm that finds the largest product of of elements in a contiguous
subarray A[i .. j]. You may not assume that all the numbers in the input array are integers.

2. This series of exercises asks you to develop efficient algorithms to find optimal subsequences of vari-
ous kinds. A subsequence is anything obtained from a sequence by extracting a subset of elements,
but keeping them in the same order; the elements of the subsequence need not be contiguous in
the original sequence. For example, the strings C, DAMN, YAIOAI, and DYNAMICPROGRAMMING are all
subsequences of the sequence DYNAMICPROGRAMMING.

(a) Let A[1 .. m] and B[1 .. n] be two arbitrary arrays. A common subsequence of A and B is
another sequence that is a subsequence of both A and B. Describe an efficient algorithm to
compute the length of the longest common subsequence of A and B.

(b) Let A[1 .. m] and B[1 .. n] be two arbitrary arrays. A common supersequence of A and B is
another sequence that contains both A and B as subsequences. Describe an efficient algorithm
to compute the length of the shortest common supersequence of A and B.
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(c) Call a sequence X [1 .. n] of numbers oscillating if X [i] < X [i + 1] for all even i, and
X [i] > X [i+ 1] for all odd i. Describe an efficient algorithm to compute the length of the
longest oscillating subsequence of an arbitrary array A of integers.

(d) Describe an efficient algorithm to compute the length of the shortest oscillating supersequence
of an arbitrary array A of integers.

(e) Call a sequence X [1 .. n] of numbers accelerating if 2 · X [i] < X [i − 1] + X [i + 1] for all i.
Describe an efficient algorithm to compute the length of the longest accelerating subsequence
of an arbitrary array A of integers.

?(f) Recall that a sequence X [1 .. n] of numbers is increasing if X [i] < X [i + 1] for all i. De-
scribe an efficient algorithm to compute the length of the longest common increasing sub-
sequence of two given arrays of integers. For example, 〈1,4,5,6,7,9〉 is the longest com-
mon increasing subsequence of the sequences 〈3,1,4,1,5,9,2,6,5,3,5,8,9,7,9,3〉 and
〈1,4, 1,4, 2,1, 3,5, 6,2, 3,7, 3,0, 9,5〉.

3. You and your eight-year-old nephew Elmo decide to play a simple card game. At the beginning
of the game, the cards are dealt face up in a long row. Each card is worth a different number
of points. After all the cards are dealt, you and Elmo take turns removing either the leftmost or
rightmost card from the row, until all the cards are gone. At each turn, you can decide which of
the two cards to take. The winner of the game is the player that has collected the most points
when the game ends.

Having never taken an algorithms class, Elmo follows the obvious greedy strategy—when it’s
his turn, Elmo always takes the card with the higher point value. Your task is to find a strategy
that will beat Elmo whenever possible. (It might seem mean to beat up on a little kid like this, but
Elmo absolutely hates it when grown-ups let him win.)

(a) Prove that you should not also use the greedy strategy. That is, show that there is a game
that you can win, but only if you do not follow the same greedy strategy as Elmo.

(b) Describe and analyze an algorithm to determine, given the initial sequence of cards, the
maximum number of points that you can collect playing against Elmo.

4. It’s almost time to show off your flippin’ sweet dancing skills! Tomorrow is the big dance contest
you’ve been training for your entire life, except for that summer you spent with your uncle in
Alaska hunting wolverines. You’ve obtained an advance copy of the the list of n songs that the
judges will play during the contest, in chronological order.

You know all the songs, all the judges, and your own dancing ability extremely well. For each
integer k, you know that if you dance to the kth song on the schedule, you will be awarded exactly
Score[k] points, but then you will be physically unable to dance for the next Wait[k] songs (that
is, you cannot dance to songs k+ 1 through k+Wait[k]). The dancer with the highest total score
at the end of the night wins the contest, so you want your total score to be as high as possible.

Describe and analyze an efficient algorithm to compute the maximum total score you can
achieve. The input to your sweet algorithm is the pair of arrays Score[1 .. n] and Wait[1 .. n].

5. A palindrome is any string that is exactly the same as its reversal, like I, or DEED, or RACECAR, or
AMANAPLANACATACANALPANAMA.
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(a) Describe and analyze an algorithm to find the length of the longest subsequence of a given
string that is also a palindrome. For example, the longest palindrome subsequence of
MAHDYNAMICPROGRAMZLETMESHOWYOUTHEM is MHYMRORMYHM, so given that string as input, your
algorithm should output the number 11.

(b) Any string can be decomposed into a sequence of palindromes. For example, the string
BUBBASEESABANANA (‘Bubba sees a banana.’) can be broken into palindromes in the following
ways (and many others):

BUB + BASEESAB + ANANA

B + U + BB + A + SEES + ABA + NAN + A

B + U + BB + A + SEES + A + B + ANANA

B + U + B + B + A + S + E + E + S + A + B + A + N + A + N + A

Describe and analyze an efficient algorithm to find the smallest number of palindromes that
make up a given input string. For example, given the input string BUBBASEESABANANA, your
algorithm would return the integer 3.

6. Suppose you have a subroutine QUALITY that can compute the ‘quality’ of any given string A[1 .. k]
in O(k) time. For example, the quality of a string might be 1 if the string is a Québecois curse
word, and 0 otherwise.

Given an arbitrary input string T[1 .. n], we would like to break it into contiguous substrings,
such that the total quality of all the substrings is as large as possible. For example, the string
SAINTCIBOIREDESACRAMENTDECRISSE can be decomposed into the substrings SAINT + CIBOIRE

+ DE + SACRAMENT + DE + CRISSE, of which three (or possibly four) are sacres.

Describe an algorithm that breaks a string into substrings of maximum total quality, using the
QUALITY subroutine.

7. Consider two horizontal lines `1 and `2 in the plane. Suppose we are given (the x-coordinates
of) n distinct points a1, a2, . . . , an on `1 and n distinct points b1, b2, . . . , bn on `2. (The points ai
and b j are not necessarily indexed in order from left to right, or in the same order.) Design an
algorithm to compute the largest set S of non-intersecting line segments satisfying to the following
restrictions:

(a) Each segment in S connects some point ai to the corresponding point bi .

(b) No two segments in S intersect.

8. Suppose you are given an m× n bitmap, represented by an array M[1 .. m, 1 .. n] whose entries
are all 0 or 1. A solid block is a subarray of the form M[i .. i′, j .. j′] in which every bit is equal to 1.
Describe and analyze an efficient algorithm to find a solid block in M with maximum area.

9. You are driving a bus along a highway, full of rowdy, hyper, thirsty students and a soda fountain
machine. Each minute that a student is on your bus, that student drinks one ounce of soda. Your
goal is to drop the students off quickly, so that the total amount of soda consumed by all students
is as small as possible.

You know how many students will get off of the bus at each exit. Your bus begins somewhere
along the highway (probably not at either end) and move s at a constant speed of 37.4 miles per
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hour. You must drive the bus along the highway; however, you may drive forward to one exit then
backward to an exit in the opposite direction, switching as often as you like. (You can stop the
bus, drop off students, and turn around instantaneously.)

Describe an efficient algorithm to drop the students off so that they drink as little soda as
possible. Your input consists of the bus route (a list of the exits, together with the travel time
between successive exits), the number of students you will drop off at each exit, and the current
location of your bus (which you may assume is an exit).

10. In a previous life, you worked as a cashier in the lost Antarctican colony of Nadira, spending the
better part of your day giving change to your customers. Because paper is a very rare and valuable
resource in Antarctica, cashiers were required by law to use the fewest bills possible whenever
they gave change. Thanks to the numerological predilections of one of its founders, the currency
of Nadira, called Dream Dollars, was available in the following denominations: $1, $4, $7, $13,
$28, $52, $91, $365.9

(a) The greedy change algorithm repeatedly takes the largest bill that does not exceed the target
amount. For example, to make $122 using the greedy algorithm, we first take a $91 bill,
then a $28 bill, and finally three $1 bills. Give an example where this greedy algorithm uses
more Dream Dollar bills than the minimum possible.

(b) Describe and analyze a recursive algorithm that computes, given an integer k, the minimum
number of bills needed to make k Dream Dollars. (Don’t worry about making your algorithm
fast; just make sure it’s correct.)

(c) Describe a dynamic programming algorithm that computes, given an integer k, the minimum
number of bills needed to make k Dream Dollars. (This one needs to be fast.)

11. What excitement! The Champaign Spinners and the Urbana Dreamweavers have advanced to
meet each other in the World Series of Basket-weaving! The World Champions will be decided
by a best-of- 2n− 1 series of head-to-head weaving matches, and the first to win n matches will
take home the coveted Golden Basket (for example, a best-of-7 series requiring four match wins,
but we will keep the generalized case). We know that for any given match there is a constant
probability p that Champaign will win, and a subsequent probability q = 1− p that Urbana will
win.

Let P(i, j) be the probability that Champaign will win the series given that they still need i
more victories, whereas Urbana needs j more victories for the championship. P(0, j) = 1 for any j,
because Champaign needs no more victories to win. Similarly, P(i, 0) = 0 for any i, as Champaign
cannot possibly win if Urbana already has. P(0, 0) is meaningless. Champaign wins any particular
match with probability p and loses with probability q, so

P(i, j) = p · P(i− 1, j) + q · P(i, j− 1)

for any i ≥ 1 and j ≥ 1.

Describe and analyze an efficient algorithm that computes the probability that Champaign will
win the series (that is, calculate P(n, n)), given the parameters n, p, and q as input.

9For more details on the history and culture of Nadira, including images of the various denominations of Dream Dollars, see
http://www.dream-dollars.com.
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12. Vankin’s Mile is a solitaire game played on an n× n square grid. The player starts by placing a
token on any square of the grid. Then on each turn, the player moves the token either one square
to the right or one square down. The game ends when player moves the token off the edge of the
board. Each square of the grid has a numerical value, which could be positive, negative, or zero.
The player starts with a score of zero; whenever the token lands on a square, the player adds its
value to his score. The object of the game is to score as many points as possible.

For example, given the grid below, the player can score 8−6+7−3+4 = 10 points by placing
the initial token on the 8 in the second row, and then moving down, down, right, down, down.
(This is not the best possible score for these values.)

-1 7 -8 10 -5

-4 -9 8
⇓

-6 0

5 -2 -6
⇓

-6 7

-7 4 7⇒ -3
⇓

-3

7 1 -6 4
⇓

-9

Describe and analyze an efficient algorithm to compute the maximum possible score for a
game of Vankin’s Mile, given the n× n array of values as input.

13. A shuffle of two strings X and Y is formed by interspersing the characters into a new string, keeping
the characters of X and Y in the same order. For example, ‘bananaananas’ is a shuffle of ‘banana’
and ‘ananas’ in several different ways.

bananaananas bananaananas bananaananas

The strings ‘prodgyrnamammiincg’ and ‘dyprongarmammicing’ are both shuffles of ‘dynamic’ and
‘programming’:

prodgyrnamammiincg dyprongarmammicing

Given three strings A[1 .. m], B[1 .. n], and C[1 .. m+ n], describe and analyze an algorithm to
determine whether C is a shuffle of A and B.

14. Describe and analyze an efficient algorithm to find the length of the longest contiguous substring
that appears both forward and backward in an input string T[1 .. n]. The forward and backward
substrings must not overlap. Here are several examples:

• Given the input string ALGORITHM, your algorithm should return 0.

• Given the input string RECURSION, your algorithm should return 1, for the substring R.

• Given the input string REDIVIDE, your algorithm should return 3, for the substring EDI. (The
forward and backward substrings must not overlap!)

• Given the input string DYNAMICPROGRAMMINGMANYTIMES, your algorithm should return 4, for
the substring YNAM. (In particular, it should not return 6, for the subsequence YNAMIR).
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15. Dance Dance Revolution is a dance video game, first introduced in Japan by Konami in 1998.
Players stand on a platform marked with four arrows, pointing forward, back, left, and right,
arranged in a cross pattern. During play, the game plays a song and scrolls a sequence of n arrows
(

Ü

, Ü,

Ü

, or Ü) from the bottom to the top of the screen. At the precise moment each arrow
reaches the top of the screen, the player must step on the corresponding arrow on the dance
platform. (The arrows are timed so that you’ll step with the beat of the song.)

You are playing a variant of this game called “Vogue Vogue Revolution”, where the goal is to
play perfectly but move as little as possible. When an arrow reaches the top of the screen, if one
of your feet is already on the correct arrow, you are awarded one style point for maintaining your
current pose. If neither foot is on the right arrow, you must move one (and only one) of your feet
from its current location to the correct arrow on the platform. If you ever step on the wrong arrow,
or fail to step on the correct arrow, or move more than one foot at a time, or move either foot
when you are already standing on the correct arrow, all your style points are taken away and you
lose the game.

How should you move your feet to maximize your total number of style points? For purposes
of this problem, assume you always start with you left foot on

Ü

and you right foot on Ü, and that
you’ve memorized the entire sequence of arrows. For example, if the sequence is Ü Ü

Ü Ü Ü

Ü

Ü

Ü,
you can earn 5 style points by moving you feet as shown below:

➜

➜

➜

➜

➜

➜
➜ ➜

➜

➜ ➜

➜➜

➜

➜➜

➜➜

➜ ➜

➜

➜

➜➜

➜ ➜

➜

➜

L R R R R R R L R L

➜L ➜L

➜L ➜L

➜L ➜L ➜R➜RL R R R R R L R L
L L

L L
L L RR

Style point! Style point! Style point! Style point!Style point!

➜ ➜

➜ ➜ ➜ ➜

➜

R

➜

Begin!

(a) Prove that for any sequence of n arrows, it is possible to earn at least n/4− 1 style points.

(b) Describe an efficient algorithm to find the maximum number of style points you can earn
during a given VVR routine. The input to your algorithm is an array Arrow[1 .. n] containing
the sequence of arrows.

16. Suppose we want to display a paragraph of text on a computer screen. The text consists of n
words, where the ith word is pi pixels wide. We want to break the paragraph into several lines,
each exactly P pixels long. Depending on which words we put on each line, we will need to insert
different amounts of white space between the words. The paragraph should be fully justified,
meaning that the first word on each line starts at its leftmost pixel, and except for the last line,
the last character on each line ends at its rightmost pixel. There must be at least one pixel of
white-space between any two words on the same line.

Define the slop of a paragraph layout as the sum over all lines, except the last, of the cube of
the number of extra white-space pixels in each line (not counting the one pixel required between
every adjacent pair of words). Specifically, if a line contains words i through j, then the amount of
extra white space on that line is P − j + i −

∑ j
k=i pk. Describe a dynamic programming algorithm

to print the paragraph with minimum slop.

17. [Stolen from abhi shelat.] You have mined a large slab of marble from your quarry. For simplicity,
suppose the marble slab is a rectangle measuring n inches in height and m inches in width. You
want to cut the slab into smaller rectangles of various sizes—some for kitchen countertops, some
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for large sculpture projects, others for memorial headstones. You have a marble saw that can make
either horizontal or vertical cuts across any rectangular slab. At any given time, you can query the
spot price px ,y of an x × y marble rectangle, for any positive integers x and y . These prices will
vary with demand, so do not make any assumptions about them; in particular, larger rectangles
may have much smaller spot prices. Given the spot prices, describe an algorithm to compute how
to subdivide an n×m marble slab to maximize your profit.

18. Every year, as part of its annual meeting, the Antarctican Snail Lovers of Upper Glacierville hold a
Round Table Mating Race. Several high-quality breeding snails are placed at the edge of a round
table. The snails are numbered in order around the table from 1 to n. During the race, each snail
wanders around the table, leaving a trail of slime behind it. The snails have been specially trained
never to fall off the edge of the table or to cross a slime trail, even their own. If two snails meet,
they are declared a breeding pair, removed from the table, and whisked away to a romantic hole
in the ground to make little baby snails. Note that some snails may never find a mate, even if the
race goes on forever.

For every pair of snails, the Antarctican SLUG race organizers have posted a monetary reward,
to be paid to the owners if that pair of snails meets during the Mating Race. Specifically, there
is a two-dimensional array M[1 .. n, 1 .. n] posted on the wall behind the Round Table, where
M[i, j] = M[ j, i] is the reward to be paid if snails i and j meet.

Describe and analyze an algorithm to compute the maximum total reward that the organizers
could be forced to pay, given the array M as input.
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1

5 2
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3
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7

The end of a typical Antarctican SLUG race. Snails 6 and 8 never find mates.
The organizers must pay M[3,4] +M[2,5] +M[1,7].

19. Let P be a set of points in the plane in convex position. Intuitively, if a rubber band were wrapped
around the points, then every point would touch the rubber band. More formally, for any point p
in P, there is a line that separates p from the other points in P. Moreover, suppose the points are
indexed P[1], P[2], . . . , P[n] in counterclockwise order around the ‘rubber band’, starting with
the leftmost point P[1].

This problem asks you to solve a special case of the traveling salesman problem, where the
salesman must visit every point in P, and the cost of moving from one point p ∈ P to another point
q ∈ P is the Euclidean distance |pq|.
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(a) Describe a simple algorithm to compute the shortest cyclic tour of P.

(b) A simple tour is one that never crosses itself. Prove that the shortest tour of P must be simple.

(c) Describe and analyze an efficient algorithm to compute the shortest tour of P that starts at
the leftmost point P[1] and ends at the rightmost point P[r].

20. Recall that a subtree of a (rooted, ordered) binary tree T consists of a node and all its descendants.
Design and analyze an efficient algorithm to compute the largest common subtree of two given
binary trees T1 and T2; this is the largest subtree of T1 that is isomorphic to a subtree in T2.
The contents of the nodes are irrelevant; we are only interested in matching the underlying
combinatorial structure.

Two binary trees, with their largest common subtree emphasized

21. Suppose we need to distribute a message to all the nodes in a rooted tree. Initially, only the root
node knows the message. In a single round, any node that knows the message can forward it
to at most one of its children. Design an algorithm to compute the minimum number of rounds
required for the message to be delivered to all nodes.

A message being distributed through a tree in five rounds.

22. A company is planning a party for its employees. The employees in the company are organized
into a strict hierarchy, that is, a tree with the company president at the root. The organizers of
the party have assigned a real number to each employee measuring how ‘fun’ the employee is. In
order to keep things social, there is one restriction on the guest list: an employee cannot attend
the party if their immediate supervisor is present. On the other hand, the president of the company
must attend the party, even though she has a negative fun rating; it’s her company, after all. Give
an algorithm that makes a guest list for the party that maximizes the sum of the ‘fun’ ratings of the
guests.

23. Let T be a rooted binary tree with n vertices, and let k ≤ n be a positive integer. We would like to
mark k vertices in T so that every vertex has a nearby marked ancestor. More formally, we define
the clustering cost of any subset K of vertices as

cost(K) =max
v

cost(v, K),
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where the maximum is taken over all vertices v in the tree, and

cost(v, K) =







0 if v ∈ K

∞ if v is the root of T and v 6∈ K

1+ cost(parent(v)) otherwise

Describe and analyze a dynamic-programming algorithm to compute the minimum clustering
cost of any subset of k vertices in T . For full credit, your algorithm should run in O(n2k2) time.
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A subset of 5 vertices with clustering cost 3

24. Oh, no! You have been appointed as the gift czar for Giggle, Inc.’s annual mandatory holiday
party! The president of the company, who is certifiably insane, has declared that every Giggle
employee must receive one of three gifts: (1) an all-expenses-paid six-week vacation anywhere in
the world, (2) an all-the-pancakes-you-can-eat breakfast for two at Jumping Jack Flash’s Flapjack
Stack Shack, or (3) a burning paper bag full of dog poop. Corporate regulations prohibit any
employee from receiving the same gift as his/her direct supervisor. Any employee who receives a
better gift than his/her direct supervisor will almost certainly be fired in a fit of jealousy. How do
you decide what gifts everyone gets if you want to minimize the number of people that get fired?

1

23 32

3 3221

31

22

1 1

3

2 1

3

1

3

A tree labeling with cost 9. Bold nodes have smaller labels than their parents.
This is not the optimal labeling for this tree.

More formally, suppose you are given a rooted tree T , representing the company hierarchy.
You want to label each node in T with an integer 1, 2, or 3, such that every node has a different
label from its parent.. The cost of an labeling is the number of nodes that have smaller labels than
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their parents. Describe and analyze an algorithm to compute the minimum cost of any labeling of
the given tree T . (Your algorithm does not have to compute the actual best labeling—just its cost.)

25. Ribonucleic acid (RNA) molecules are long chains of millions of nucleotides or bases of four
different types: adenine (A), cytosine (C), guanine (G), and uracil (U). The sequence of an RNA
molecule is a string b[1 .. n], where each character b[i] ∈ {A, C , G, U} corresponds to a base. In
addition to the chemical bonds between adjacent bases in the sequence, hydrogen bonds can form
between certain pairs of bases. The set of bonded base pairs is called the secondary structure of the
RNA molecule.

We say that two base pairs (i, j) and (i′, j′) with i < j and i′ < j′ overlap if i < i′ < j < j′ or
i′ < i < j′ < j. In practice, most base pairs are non-overlapping. Overlapping base pairs create
so-called pseudoknots in the secondary structure, which are essential for some RNA functions, but
are more difficult to predict.

Suppose we want to predict the best possible secondary structure for a given RNA sequence.
We will adopt a drastically simplified model of secondary structure:

• Each base can be paired with at most one other base.
• Only A-U pairs and C-G pairs can bond.
• Pairs of the form (i, i+ 1) and (i, i+ 2) cannot bond.
• Overlapping base pairs cannot bond.

The last restriction allows us to visualize RNA secondary structure as a sort of fat tree.

A U G A G U A
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Example RNA secondary structure with 21 base pairs, indicated by heavy red lines.
Gaps are indicated by dotted curves. This structure has score 22 + 22 + 82 + 12 + 72 + 42 + 72 = 187

(a) Describe and analyze an algorithm that computes the maximum possible number of bonded
base pairs in a secondary structure for a given RNA sequence.

(b) A gap in a secondary structure is a maximal substring of unpaired bases. Large gaps lead to
chemical instabilities, so secondary structures with smaller gaps are more likely. To account
for this preference, let’s define the score of a secondary structure to be the sum of the squares
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of the gap lengths.10 Describe and analyze an algorithm that computes the minimum possible
score of a secondary structure for a given RNA sequence.

26. Describe and analyze an algorithm to solve the traveling salesman problem in O(2n poly(n)) time.
Given an undirected n-vertex graph G with weighted edges, your algorithm should return the
weight of the lightest cycle in G that visits every vertex exactly once, or∞ if G has no such cycles.
[Hint: The obvious recursive algorithm takes O(n!) time.]

?27. LetA = {A1, A2, . . . , An} be a finite set of strings over some fixed alphabet Σ. An edit center forA
is a string C ∈ Σ∗ such that the maximum edit distance from C to any string inA is as small as
possible. The edit radius ofA is the maximum edit distance from an edit center to a string inA .
A set of strings may have several edit centers, but its edit radius is unique.

EditRadius(A ) = min
C∈Σ∗

max
A∈A

Edit(A, C) EditCenter(A ) = argmin
C∈Σ∗

max
A∈A

Edit(A, C)

(a) Describe and analyze an efficient algorithm to compute the edit radius of three given strings.

(b) Describe and analyze an efficient algorithm to approximate the edit radius of an arbitrary
set of strings within a factor of 2. (Computing the edit radius exactly is NP-hard unless the
number of strings is fixed.)

?28. Let D[1 .. n] be an array of digits, each an integer between 0 and 9. An digital subsequence of
D is an sequence of positive integers composed in the usual way from disjoint substrings of D.
For example, 3,4,5,6,8,9,32,38,46,64,83,279 is an increasing digital subsequence of the first
several digits of π:

3 , 1, 4 , 1, 5 , 9, 2, 6 , 5,3, 5, 8 , 9 , 7,9, 3, 2 , 3,8 , 4, 6 , 2, 6,4 ,3, 3, 8,3 , 2,7, 9

The length of a digital subsequence is the number of integers it contains, not the number of digits;
the preceding example has length 12.

Describe and analyze an efficient algorithm to compute the longest increasing digital subse-
quence of D. [Hint: Be careful about your computational assumptions. How long does it take to
compare two k-digit numbers?]

For full credit, your algorithm should run in O(n4) time; faster algorithms are worth extra
credit. The fastest algorithm I know for this problem runs in O(n3/2 log n) time, but this requires
several tricks, in both the algorithm and its analysis.

10This score function has absolutely no connection to reality; I just made it up. Real RNA structure prediction requires much
more complicated scoring functions.
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— Randall Munroe, xkcd (http://xkcd.com/399/)
Reproduced under a Creative Commons Attribution-NonCommercial 2.5 License
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