
S. Dasgupta, C.H. Papadimitriou, and U.V. Vazirani 165

5.22. You are given a graph G = (V,E) with positive edge weights, and a minimum spanning tree
T = (V,E′) with respect to these weights; you may assume G and T are given as adjacency lists.
Now suppose the weight of a particular edge e ∈ E is modified from w(e) to a new value ŵ(e). You
wish to quickly update the minimum spanning tree T to reflect this change, without recomputing
the entire tree from scratch. There are four cases. In each case give a linear-time algorithm for
updating the tree.

(a) e 6∈ E′ and ŵ(e) > w(e).
(b) e 6∈ E′ and ŵ(e) < w(e).
(c) e ∈ E′ and ŵ(e) < w(e).
(d) e ∈ E′ and ŵ(e) > w(e).

5.23. Sometimes we want light spanning trees with certain special properties. Here’s an example.

Input: Undirected graph G = (V,E); edge weights we; subset of vertices U ⊂ V
Output: The lightest spanning tree in which the nodes of U are leaves (there might be
other leaves in this tree as well).

(The answer isn’t necessarily a minimum spanning tree.)
Give an algorithm for this problem which runs in O(|E| log |V |) time. (Hint: When you remove
nodes U from the optimal solution, what is left?)

5.24. A binary counter of unspecified length supports two operations: increment (which increases its
value by one) and reset (which sets its value back to zero). Show that, starting from an initially
zero counter, any sequence of n increment and reset operations takes time O(n); that is, the
amortized time per operation is O(1).

5.25. Here’s a problem that occurs in automatic program analysis. For a set of variables x1, . . . , xn,
you are given some equality constraints, of the form “xi = xj” and some disequality constraints,
of the form “xi 6= xj .” Is it possible to satisfy all of them?
For instance, the constraints

x1 = x2, x2 = x3, x3 = x4, x1 6= x4

cannot be satisfied. Give an efficient algorithm that takes as inputm constraints over n variables
and decides whether the constraints can be satisfied.

5.26. Graphs with prescribed degree sequences. Given a list of n positive integers d1, d2, . . . , dn, we want
to efficiently determine whether there exists an undirected graph G = (V,E) whose nodes have
degrees precisely d1, d2, . . . , dn. That is, if V = {v1, . . . , vn}, then the degree of vi should be exactly
di. We call (d1, . . . , dn) the degree sequence ofG. This graphG should not contain self-loops (edges
with both endpoints equal to the same node) or multiple edges between the same pair of nodes.

(a) Give an example of d1, d2, d3, d4 where all the di ≤ 3 and d1 + d2 + d3 + d4 is even, but for
which no graph with degree sequence (d1, d2, d3, d4) exists.

(b) Suppose that d1 ≥ d2 ≥ · · · ≥ dn and that there exists a graph G = (V,E) with degree
sequence (d1, . . . , dn). We want to show that there must exist a graph that has this degree
sequence and where in addition the neighbors of v1 are v2, v3, . . . , vd1+1. The idea is to
gradually transform G into a graph with the desired additional property.

i. Suppose the neighbors of v1 in G are not v2, v3, . . . , vd1+1. Show that there exists i <
j ≤ n and u ∈ V such that {v1, vi}, {u, vj} /∈ E and {v1, vj}, {u, vi} ∈ E.

166 Algorithms

ii. Specify the changes you would make to G to obtain a new graph G′ = (V,E′) with the
same degree sequence as G and where (v1, vi) ∈ E′.

iii. Now show that there must be a graph with the given degree sequence but in which v1

has neighbors v2, v3, . . . , vd1+1.
(c) Using the result from part (b), describe an algorithm that on input d1, . . . , dn (not necessar-

ily sorted) decides whether there exists a graph with this degree sequence. Your algorithm
should run in time polynomial in n and in m =

∑n
i=1 di.

5.27. Alice wants to throw a party and is deciding whom to call. She has n people to choose from, and
she has made up a list of which pairs of these people know each other. She wants to pick as many
people as possible, subject to two constraints: at the party, each person should have at least five
other people whom they know and five other people whom they don’t know.
Give an efficient algorithm that takes as input the list of n people and the list of pairs who know
each other and outputs the best choice of party invitees. Give the running time in terms of n.

5.28. A prefix-free encoding of a finite alphabet Γ assigns each symbol in Γ a binary codeword, such
that no codeword is a prefix of another codeword.
Show that such an encoding can be represented by a full binary tree in which each leaf corre-
sponds to a unique element of Γ, whose codeword is generated by the path from the root to that
leaf (interpreting a left branch as 0 and a right branch as 1).

5.29. Ternary Huffman. Trimedia Disks Inc. has developed “ternary” hard disks. Each cell on a disk
can now store values 0, 1, or 2 (instead of just 0 or 1). To take advantage of this new technology,
provide a modified Huffman algorithm for compressing sequences of characters from an alpha-
bet of size n, where the characters occur with known frequencies f1, f2, . . . , fn. Your algorithm
should encode each character with a variable-length codeword over the values 0, 1, 2 such that no
codeword is a prefix of another codeword and so as to obtain the maximum possible compression.
Prove that your algorithm is correct.

5.30. The basic intuition behind Huffman’s algorithm, that frequent blocks should have short en-
codings and infrequent blocks should have long encodings, is also at work in English, where
typical words like I, you, is, and, to, from, and so on are short, and rarely used words like
velociraptor are longer.
However, words like fire!, help!, and run! are short not because they are frequent, but
perhaps because time is precious in situations where they are used.
To make things theoretical, suppose we have a file composed of m different words, with frequen-
cies f1, . . . , fm. Suppose also that for the ith word, the cost per bit of encoding is ci. Thus, if we
find a prefix-free code where the ith word has a codeword of length li, then the total cost of the
encoding will be

∑
i fi · ci · li.

Show how to modify Huffman’s algorithm to find the prefix-free encoding of minimum total cost.
5.31. A server has n customers waiting to be served. The service time required by each customer is

known in advance: it is ti minutes for customer i. So if, for example, the customers are served in
order of increasing i, then the ith customer has to wait

∑i
j=1 tj minutes.

We wish to minimize the total waiting time

T =

n∑

i=1

(time spent waiting by customer i).

Give an efficient algorithm for computing the optimal order in which to process the customers.

Algorithms Lecture 7: Greedy Algorithms [Fa’10]

8.

Suppose you are standing in a field surrounded by several large balloons. You want to use your
brand new Acme Brand Zap-O-MaticTM to pop all the balloons, without moving from your current
location. The Zap-O-MaticTM shoots a high-powered laser beam, which pops all the balloons it hits.
Since each shot requires enough energy to power a small country for a year, you want to fire as
few shots as possible.

Nine balloons popped by 4 shots of the Zap-O-MaticTM

The minimum zap problem can be stated more formally as follows. Given a set C of n circles
in the plane, each specified by its radius and the (x , y) coordinates of its center, compute the
minimum number of rays from the origin that intersect every circle in C . Your goal is to find an
efficient algorithm for this problem.

(a) Suppose it is possible to shoot a ray that does not intersect any balloons. Describe and
analyze a greedy algorithm that solves the minimum zap problem in this special case. [Hint:
See Exercise 2.]

(b) Describe and analyze a greedy algorithm whose output is within 1 of optimal. That is, if m is
the minimum number of rays required to hit every balloon, then your greedy algorithm must
output either m or m+ 1. (Of course, you must prove this fact.)

11

