
18 Algorithms

Exercises
0.1. In each of the following situations, indicate whether f = O(g), or f = Ω(g), or both (in which case

f = Θ(g)).
f(n) g(n)

(a) n− 100 n− 200
(b) n1/2 n2/3

(c) 100n+ logn n+ (log n)2

(d) n logn 10n log 10n
(e) log 2n log 3n
(f) 10 logn log(n2)

(g) n1.01 n log2 n
(h) n2/ logn n(logn)2

(i) n0.1 (log n)10

(j) (logn)log n n/ logn
(k) √

n (log n)3

(l) n1/2 5log
2

n

(m) n2n 3n

(n) 2n 2n+1

(o) n! 2n

(p) (logn)log n 2(log
2

n)2

(q)
∑n

i=1 i
k nk+1

0.2. Show that, if c is a positive real number, then g(n) = 1 + c+ c2 + · · ·+ cn is:

(a) Θ(1) if c < 1.
(b) Θ(n) if c = 1.
(c) Θ(cn) if c > 1.

The moral: in big-Θ terms, the sum of a geometric series is simply the first term if the series is
strictly decreasing, the last term if the series is strictly increasing, or the number of terms if the
series is unchanging.

0.3. The Fibonacci numbers F0, F1, F2, . . . , are defined by the rule

F0 = 0, F1 = 1, Fn = Fn−1 + Fn−2.

In this problem we will confirm that this sequence grows exponentially fast and obtain some
bounds on its growth.

(a) Use induction to prove that Fn ≥ 20.5n for n ≥ 6.
(b) Find a constant c < 1 such that Fn ≤ 2cn for all n ≥ 0. Show that your answer is correct.
(c) What is the largest c you can find for which Fn = Ω(2cn)?

0.4. Is there a faster way to compute the nth Fibonacci number than by fib2 (page 13)? One idea
involves matrices.
We start by writing the equations F1 = F1 and F2 = F0 + F1 in matrix notation:

(
F1

F2

)
=

(
0 1
1 1

)
·
(
F0

F1

)
.

S. Dasgupta, C.H. Papadimitriou, and U.V. Vazirani 83

Exercises
2.1. Use the divide-and-conquer integer multiplication algorithm to multiply the two binary integers

10011011 and 10111010.
2.2. Show that for any positive integers n and any base b, there must some power of b lying in the

range [n, bn].
2.3. Section 2.2 describes a method for solving recurrence relations which is based on analyzing the

recursion tree and deriving a formula for the work done at each level. Another (closely related)
method is to expand out the recurrence a few times, until a pattern emerges. For instance, let’s
start with the familiar T (n) = 2T (n/2) + O(n). Think of O(n) as being ≤ cn for some constant c,
so: T (n) ≤ 2T (n/2) + cn. By repeatedly applying this rule, we can bound T (n) in terms of T (n/2),
then T (n/4), then T (n/8), and so on, at each step getting closer to the value of T (·) we do know,
namely T (1) = O(1).

T (n) ≤ 2T (n/2) + cn

≤ 2[2T (n/4) + cn/2] + cn = 4T (n/4) + 2cn

≤ 4[2T (n/8) + cn/4] + 2cn = 8T (n/8) + 3cn

≤ 8[2T (n/16) + cn/8] + 3cn = 16T (n/16) + 4cn

...

A pattern is emerging... the general term is

T (n) ≤ 2kT (n/2k) + kcn.

Plugging in k = log2 n, we get T (n) ≤ nT (1) + cn log2 n = O(n logn).

(a) Do the same thing for the recurrence T (n) = 3T (n/2) + O(n). What is the general kth term
in this case? And what value of k should be plugged in to get the answer?

(b) Now try the recurrence T (n) = T (n− 1) + O(1), a case which is not covered by the master
theorem. Can you solve this too?

2.4. Suppose you are choosing between the following three algorithms:

• Algorithm A solves problems by dividing them into five subproblems of half the size, recur-
sively solving each subproblem, and then combining the solutions in linear time.

• Algorithm B solves problems of size n by recursively solving two subproblems of size n − 1
and then combining the solutions in constant time.

• Algorithm C solves problems of size n by dividing them into nine subproblems of size n/3,
recursively solving each subproblem, and then combining the solutions in O(n2) time.

What are the running times of each of these algorithms (in big-O notation), and which would you
choose?

2.5. Solve the following recurrence relations and give a Θ bound for each of them.

(a) T (n) = 2T (n/3) + 1

(b) T (n) = 5T (n/4) + n

84 Algorithms

(c) T (n) = 7T (n/7) + n

(d) T (n) = 9T (n/3) + n2

(e) T (n) = 8T (n/2) + n3

(f) T (n) = 49T (n/25) + n3/2 logn

(g) T (n) = T (n− 1) + 2

(h) T (n) = T (n− 1) + nc, where c ≥ 1 is a constant
(i) T (n) = T (n− 1) + cn, where c > 1 is some constant
(j) T (n) = 2T (n− 1) + 1

(k) T (n) = T (
√
n) + 1

2.6. A linear, time-invariant system has the following impulse response:

�� �� �� �� �	
� � �� �� ������

� �� � ��� �� �� ! "#$ $% % &'(() *+ ,- ./ t

b(t)

t0

1/t0

(a) Describe in words the effect of this system.
(b) What is the corresponding polynomial?

2.7. What is the sum of the nth roots of unity? What is their product if n is odd? If n is even?
2.8. Practice with the fast Fourier transform.

(a) What is the FFT of (1, 0, 0, 0)? What is the appropriate value of ω in this case? And of which
sequence is (1, 0, 0, 0) the FFT?

(b) Repeat for (1, 0, 1,−1).

2.9. Practice with polynomial multiplication by FFT.

(a) Suppose that you want to multiply the two polynomials x + 1 and x2 + 1 using the FFT.
Choose an appropriate power of two, find the FFT of the two sequences, multiply the results
componentwise, and compute the inverse FFT to get the final result.

(b) Repeat for the pair of polynomials 1 + x+ 2x2 and 2 + 3x.

2.10. Find the unique polynomial of degree 4 that takes on values p(1) = 2, p(2) = 1, p(3) = 0, p(4) = 4,
and p(5) = 0. Write your answer in the coefficient representation.

2.11. In justifying our matrix multiplication algorithm (Section 2.5), we claimed the following block-
wise property: if X and Y are n× n matrices, and

X =

[
A B
C D

]
, Y =

[
E F
G H

]
.

S. Dasgupta, C.H. Papadimitriou, and U.V. Vazirani 85

where A, B, C, D, E, F , G, and H are n/2 × n/2 submatrices, then the product XY can be
expressed in terms of these blocks:

XY =

[
A B
C D

] [
E F
G H

]
=

[
AE +BG AF +BH
CE +DG CF +DH

]

Prove this property.

2.12. How many lines, as a function of n (in Θ(·) form), does the following program print? Write a
recurrence and solve it. You may assume n is a power of 2.

function f(n)
if n > 1:

print_line(‘‘still going’’)
f(n/2)
f(n/2)

2.13. A binary tree is full if all of its vertices have either zero or two children. Let Bn denote the
number of full binary trees with n vertices.

(a) By drawing out all full binary trees with 3, 5, or 7 vertices, determine the exact values of
B3, B5, and B7. Why have we left out even numbers of vertices, like B4?

(b) For general n, derive a recurrence relation for Bn.
(c) Show by induction that Bn is Ω(2n).

2.14. You are given an array of n elements, and you notice that some of the elements are duplicates;
that is, they appear more than once in the array. Show how to remove all duplicates from the
array in time O(n log n).

2.15. In our median-finding algorithm (Section 2.4), a basic primitive is the split operation, which
takes as input an array S and a value v and then divides S into three sets: the elements less
than v, the elements equal to v, and the elements greater than v. Show how to implement this
split operation in place, that is, without allocating new memory.

2.16. You are given an infinite array A[·] in which the first n cells contain integers in sorted order and
the rest of the cells are filled with∞. You are not given the value of n. Describe an algorithm that
takes an integer x as input and finds a position in the array containing x, if such a position exists,
in O(log n) time. (If you are disturbed by the fact that the array A has infinite length, assume
instead that it is of length n, but that you don’t know this length, and that the implementation
of the array data type in your programming language returns the error message ∞ whenever
elements A[i] with i > n are accessed.)

2.17. Given a sorted array of distinct integers A[1, . . . , n], you want to find out whether there is an
index i for which A[i] = i. Give a divide-and-conquer algorithm that runs in time O(log n).

2.18. Consider the task of searching a sorted array A[1 . . . n] for a given element x: a task we usually
perform by binary search in time O(log n). Show that any algorithm that accesses the array only
via comparisons (that is, by asking questions of the form “is A[i] ≤ z?”), must take Ω(logn) steps.

2.19. A k-way merge operation. Suppose you have k sorted arrays, each with n elements, and you want
to combine them into a single sorted array of kn elements.

86 Algorithms

(a) Here’s one strategy: Using the merge procedure from Section 2.3, merge the first two ar-
rays, then merge in the third, then merge in the fourth, and so on. What is the time
complexity of this algorithm, in terms of k and n?

(b) Give a more efficient solution to this problem, using divide-and-conquer.

2.20. Show that any array of integers x[1 . . . n] can be sorted in O(n+M) time, where

M = max
i
xi −min

i
xi.

For small M , this is linear time: why doesn’t the Ω(n logn) lower bound apply in this case?
2.21. Mean and median. One of the most basic tasks in statistics is to summarize a set of observations

{x1, x2, . . . , xn} ⊆ R by a single number. Two popular choices for this summary statistic are:

• The median, which we’ll call µ1

• The mean, which we’ll call µ2

(a) Show that the median is the value of µ that minimizes the function
∑

i

|xi − µ|.

You can assume for simplicity that n is odd. (Hint: Show that for any µ 6= µ1, the function
decreases if you move µ either slightly to the left or slightly to the right.)

(b) Show that the mean is the value of µ that minimizes the function
∑

i

(xi − µ)2.

One way to do this is by calculus. Another method is to prove that for any µ ∈ R,
∑

i

(xi − µ)2 =
∑

i

(xi − µ2)
2 + n(µ− µ2)

2.

Notice how the function for µ2 penalizes points that are far from µ much more heavily than the
function for µ1. Thus µ2 tries much harder to be close to all the observations. This might sound
like a good thing at some level, but it is statistically undesirable because just a few outliers can
severely throw off the estimate of µ2. It is therefore sometimes said that µ1 is a more robust
estimator than µ2. Worse than either of them, however, is µ∞, the value of µ that minimizes the
function

max
i
|xi − µ|.

(c) Show that µ∞ can be computed in O(n) time (assuming the numbers xi are small enough
that basic arithmetic operations on them take unit time).

2.22. You are given two sorted lists of size m and n. Give an O(logm + logn) time algorithm for
computing the kth smallest element in the union of the two lists.

2.23. An array A[1 . . . n] is said to have a majority element if more than half of its entries are the
same. Given an array, the task is to design an efficient algorithm to tell whether the array has a
majority element, and, if so, to find that element. The elements of the array are not necessarily
from some ordered domain like the integers, and so there can be no comparisons of the form “is
A[i] > A[j]?”. (Think of the array elements as GIF files, say.) However you can answer questions
of the form: “is A[i] = A[j]?” in constant time.

88 Algorithms

2.26. Professor F. Lake tells his class that it is asymptotically faster to square an n-bit integer than to
multiply two n-bit integers. Should they believe him?

2.27. The square of a matrix A is its product with itself, AA.

(a) Show that five multiplications are sufficient to compute the square of a 2× 2 matrix.
(b) What is wrong with the following algorithm for computing the square of an n× n matrix?

“Use a divide-and-conquer approach as in Strassen’s algorithm, except that in-
stead of getting 7 subproblems of size n/2, we now get 5 subproblems of size n/2
thanks to part (a). Using the same analysis as in Strassen’s algorithm, we can
conclude that the algorithm runs in time O(nlog

2
5).”

(c) In fact, squaring matrices is no easier than matrix multiplication. In this part, you will
show that if n × n matrices can be squared in time S(n) = O(nc), then any two n × n
matrices can be multiplied in time O(nc).

i. Given two n× n matrices A and B, show that the matrix AB +BA can be computed in
time 3S(n) +O(n2).

ii. Given two n× n matrices X and Y , define the 2n× 2n matrices A and B as follows:

A =

[
X 0
0 0

]
and B =

[
0 Y
0 0

]
.

What is AB + BA, in terms of X and Y ?
iii. Using (i) and (ii), argue that the product XY can be computed in time 3S(2n) + O(n2).

Conclude that matrix multiplication takes time O(nc).

2.28. The Hadamard matrices H0, H1, H2, . . . are defined as follows:

• H0 is the 1× 1 matrix
[
1
]

• For k > 0, Hk is the 2k × 2k matrix

Hk =

[
Hk−1 Hk−1

Hk−1 −Hk−1

]

Show that if v is a column vector of length n = 2k, then the matrix-vector product Hkv can be
calculated using O(n log n) operations. Assume that all the numbers involved are small enough
that basic arithmetic operations like addition and multiplication take unit time.

2.29. Suppose we want to evaluate the polynomial p(x) = a0 + a1x+ a2x
2 + · · ·+ anx

n at point x.

(a) Show that the following simple routine, known as Horner’s rule, does the job and leaves the
answer in z.

z = an

for i = n− 1 downto 0:
z = zx+ ai

(b) How many additions and multiplications does this routine use, as a function of n? Can you
find a polynomial for which an alternative method is substantially better?

2.30. This problem illustrates how to do the Fourier Transform (FT) in modular arithmetic, for exam-
ple, modulo 7.

