
CS206 Trees

Nonrecursive definition:
A (rooted) tree consists of a set of nodes, and a set of directed
edges between nodes.
• One node is the root;
• For every node c that is not the root, there is exactly one

edge (p, c) pointing to c;
• For every node c there is a unique path from the root to c.

A

B C D E

F G H I J

K

CS206 Trees

An edge connects parent and child.
A node without children is a leaf.
Nodes with the same parent are siblings.
Depth of v is the length of the path from the root to v.
Height of v is the length of the longest path from v to a leaf.
How many edges does a tree with n nodes have?

A tree with n nodes has n− 1 edges. Node Depth Height
A 0 3
B 1 1
C 1 0
D 1 1
E 1 2
F 2 0
G 2 0
H 2 0
I 2 0
J 2 1
K 3 0

A

B C D E

F G H I J

K

CS206 Recursive definition of trees

Recursive definition: A tree consists of a root, and zero or
more subtrees T1, T2, . . . , Tk. There is an edge from the root
to the root of each subtree.

T1 T2 T3

What is the base case of
the recursion?

CS206 Tree examples

• A filesystem

• A company organigram

• A structured document (e.g. XML, HTML)

• An expression tree

• A recursion tree (function call tree)

Courses

CS206 CS700

Slides Notes Code Articles

• A decision tree

CS206 Phylogenetic tree of life

Bacteria

GreenFilamentousbacteria

Spirochetes

Grampositives

Proteobacteria

Cyanobacteria

Planctomyces

BacteroidesCytophaga

Thermotoga

Aquifex

Halophiles

Methanosarcina

Methanobacterium

Methanococcus

T. celer

Thermoproteus

Pyrodicticum

Entamoebae Slimemolds Animals
Fungi

Plants

Ciliates

Flagellates

Trichomonads

Microsporidia

Diplomonads

Archaea Eukaryota

CS206 Decision Trees

We want to write a program to
decode a transmission in Morse
code.

To translate a letter, we make a
decision tree.

E T

I A N M

S U R W K OGD

H

V

F L B C

J

P

QX Y

Z

CS206 Expression trees

e = Expression("*",

Expression("a"),

Expression("+",

Expression(2),

Expression("-",

Expression("b"),

Expression(7))))

Like list nodes, tree nodes are recursively defined types. This
tree has two types of leaves (for numbers and for variables)
and two types of inner nodes (for unary minus and for binary
operations).

class Expression():

def __init__(self, data, left=None, right=None):

self.data = data

self.left = left

self.right = right

expression.py

CS206 Displaying expressions

def __str__(self):

t = self.type()

if t == "number":

return str(self.data)

if t == "variable":

return self.data

if t == "unary": # unary minus

return "-" + str(self.left)

it’s a binary operation

return ("(" + str(self.left) + " " + self.data

+ " " + str(self.right) + ")")

CS206 Building expression trees

We can reuse our expression parser to build an expression tree.
Each method parse_item, parse_factor, parse_term, and
parse_expression now returns an Expression.

def parse_term(tok):

expr = parse_factor(tok)

t = tok[0]

while t.isSymbol("*") or t.isSymbol("/"):

tok.pop(0)

rhs = parse_factor(tok)

expr = Expression(t.value, expr, rhs)

t = tok[0]

return expr

CS206 Evaluating an expression tree:

def evaluate(expr, vars):

t = expr.type()

if t == "number":

return expr.data

if t == "variable":

if expr.data in vars:

return vars[expr.data]

else:

raise EvalError("Undefined variable ’%s’" % expr.data)

if t == "unary":

arg = evaluate(expr.left, vars)

return -arg

op = expr.data

lhs = evaluate(expr.left, vars)

rhs = evaluate(expr.right, vars)

if op == "+":

return lhs + rhs

and so on...
evaluate.py

CS206 Prefix notation

The Lisp programming languages (Scheme, Racket) express
everything in prefix-notation:

(* a (+ 2 (- b 7)))

def prefix(expr):

t = expr.type()

if t == "number":

return "%g" % expr.data

if t == "variable":

return expr.data

if t == "unary":

return "(- " + prefix(expr.left) + ")"

return ("(" + expr.data +

" " + prefix(expr.left) +

" " + prefix(expr.right) + ")")prepostfix.py

CS206 Postfix notation

Some programming languages (Forth, Postscript) are based on
a stack, and need expressions in postfix notation:

a 2 b 7 - + *

def postfix(expr):

t = expr.type()

if t == "number":

return "%g" % expr.data

if t == "variable":

return expr.data

if t == "unary":

return postfix(expr.left) + " chs"

return (postfix(expr.left) + " " +

postfix(expr.right) + " " + expr.data)

Compilers can create this code for a stack-based processor.

CS206 Tree traversals

A tree traversal is the process of visiting all nodes of a tree,
usually in a recursive manner.

All operations on our expression trees (evaluating, conversion
to string, prefix and postfix notation of expressions) are
actually tree traversals.

We distinguish three main types of tree traversals, depending
on when the information in a node is processed:
• Preorder traversal means that a node is processed before its

children;
• Postorder traversal means that a node is processed after its

children;
• Inorder traversal means that a node is processed between

its left child and its right child (and is usually only used for
binary trees).

