
CS206 Abstract Data Type Stack

Think about a stack of books, or dishes.

One can only access the top of the stack.

Operations on a stack:

• push something on top,
• look at the top,
• pop something off the stack.

CS206 Reversing a string

A simple stack client:

def reverse(s):

S = Stack()

for ch in s:

S.push(ch)

while not S.is_empty():

ch = S.pop()

print(ch, end="")

print()

CS206 Balanced symbol checker

(){[(){}]([])} is correct,
but (){[({)}]([])} is not correct.

How to check whether a string is balanced:

1. Make an empty stack,
2. For each symbol in the string:

(a) If the symbol is an opening symbol, push it on the stack.
(b) If it is a closing symbol, then

i. If the stack is empty, return false.
ii. If the top of the stack does not match the closing

symbol, return false.
iii. Pop the stack.

3. Return true if the stack is empty, otherwise false.

CS206 The runtime stack

Where do variables live? The local variables of a method live
inside the method’s activation record (also called stack frame).

(But all objects are on the heap. The stack frame only stores
the variable names and references to the heap.)

When a method starts executing, its stack frame is created.
When the method returns, its stack frame is destroyed.

The Python runtime system keeps stack frames on a stack.

The top of the stack is the stack from of the currently
executing method. A stack is suitable for storing stack frames,
since the start and return time of methods form a nesting
structure (like balanced parentheses).

(The runtime stack is built into the Python interpreter! It is
not a Python object—we cannot access the stack of activation
records ourselves.)



CS206 Example

def first(n):

second(n)

second(n * n)

def second(m):

three(m)

three(m+1)

three(m+2)

def three(z):

print("In three(%d):" % z)

first(13)

first

n: 13

second

m: 169

three

z: 170

example1.py

CS206 Recursion

The runtime stack makes recursion possible.

def factorial(n):

if n <= 1:

return 1

else:

return n * factorial(n - 1)

factorial

n: 3

factorial

n: 2

factorial

n: 1

example2.py

Any recursive program can be
rewritten to use a stack and no
recursion.

CS206 Implementing a stack

• As a Python List:
is_empty and top take constant time, push and pop take
constant time on average (because sometimes the internal
array needs to be made larger or smaller).

• If we want every operation to be always fast, we need to
know the maximum stack size in advance. Then we can
make an array of the maximum size and keep an index to
the top of the stack.

• If we do not know the maximum size, but we need every
push and pop operation to be fast, then we cannot use a
list.

CS206 A stack without lists

We use a small Node object to hold each stack element.

The Stack holds a
reference to the Node

at the top of the
stack.
Each Node holds a
reference to the one
directly below in the
stack.

Stack 1

2

3

4

Now each operation can be done in constant time!


