
CS206 Abstract Data Type Set

A Set is an abstract data type representing an unordered
collection of distinct items.

Sets appear in many problems: All the words used by
Shakespeare. All correctly spelled words. All prime numbers.
All the pixels of a given color. All the bomb locations in
MineSweeper.

We could represent a set as an array or a list, but that is not
natural (and often not efficient): Lists are ordered sequences of
not necessarily distinct elements.

CS206 The Set ADT

• set(elements) Create new set with given elements.
• len(s) Return size of set.
• x in s Is x ∈ s?
• s == t Are sets equal?
• s.issubset(t) Is s ⊆ t?
• s.issuperset(t) Is s ⊇ t?
• s.add(el) Add el to set.
• s.remove(el) Remove existing element el from set.
• s.discard(el) Remove el from set.
• s.union(t) Return s ∪ t.
• s.intersection(t) Return s ∩ t.
• s.difference(t) Return s \ t.
• for el in s: Iterate over set elements.

CS206 A simple spell checker

def read_words():

s = open("words.txt", "r")

words = set()

for w in s.readlines():

words.add(w.strip())

return words

def spell():

words = read_words()

while True:

w = input("Tell me a word> ").strip().lower()

if w in words:

print("’%s’ is a word" % w)

else:

print("Error: ’%s’ is not a word" % w)

CS206 Applications

• A spell checker.
(Use set of correctly spelled words.)

• Measuring similarity between texts.
(Consider set of words of each text, look at the size of their
intersection and union.)

• Computing prime numbers.
(Sieve of Erathosthenes).

• Remembering visited positions in a maze.
• Storing bomb positions in MineSweeper.



CS206 Implementing the Set ADT

Let’s try to implement the Set ADT ourselves, using a Python
List to store the elements.

def __init__(self):

self._data = []

def __contains__(self, el):

return el in self._data

def __length__(self):

return len(self._data)

def add(self, el):

if el not in self._data:

self._data.append(el)

Our implementation works,
but it is significantly slower
for large sets than the
Python implementation.


