KAIST €5206 Abstract Data Type Set

A Set is an abstract data type representing an unordered
collection of distinct items.

Sets appear in many problems: All the words used by
Shakespeare. All correctly spelled words. All prime numbers.
All the pixels of a given color. All the bomb locations in
MineSweeper.

We could represent a set as an array or a list, but that is not
natural (and often not efficient): Lists are ordered sequences of
not necessarily distinct elements.

KAIST CS206

def read_words():
s = open("words.txt", "r")
words = set()
for w in s.readlines():
words.add(w.strip())
return words

A simple spell checker

def spell():
words = read_words()
while True:
w = input("Tell me a word> ").strip().lower()
if w in words:
print("’%s’ is a word" % w)
else:
print ("Error: ’%s’ is not a word" % w)

KAIST €5206 The Set ADT

set (elements) Create new set with given elements.
len(s) Return size of set.

in slsz € s?

== t Are sets equal?

.issubset(t) Is s C ¢t7?

.issuperset(t) Is s D t?

.add(el) Add el to set.

.remove (el) Remove existing element el from set.
.discard(el) Remove el from set.

.union(t) Return sUt.

.intersection(t) Return sNt.

.difference(t) Return s\ t.

for el in s: lterate over set elements.

e 6 6 6 6 o o o o o o o o
n n n n n n n n n W

KAIST CS206

A spell checker.

(Use set of correctly spelled words.)

Measuring similarity between texts.

(Consider set of words of each text, look at the size of their
intersection and union.)

Computing prime numbers.

(Sieve of Erathosthenes).

Remembering visited positions in a maze.

Storing bomb positions in MineSweeper.

Applications




KAIST 5206 Implementing the Set ADT

Let's try to implement the Set ADT ourselves, using a Python
List to store the elements.

def __init__(self):

self. data = []

def __contains__(self, el):
return el in self._data

def __length__(self): Our implementation works,

return len(self. data) but it is significantly slower
for large sets than the

def add(self, el): Python implementation.

if el not in self._data:
self._data.append(el)



