
CS206 Recursion

“Recursion” means to define something in terms of itself.

A directory is a collection of files and directories.

Words in dictionaries are defined in terms of other words.

CS206 Recursion

”In order to understand recursion, one must
first understand recursion.”

– Anonymous

CS206 How to print a number in any base

What is 83790 in base 8?

It’s easy to find the last digit of a number n in
base 8: It’s simply n % 8.

The remaining digits are then the representation
of n // 8.

def print_base_8(n):

if n >= 8:

print_base_8(n // 8)

print(n % 8, end="")

But this is an easier version of the same
problem!
The Recursion Fairy solves it for us!

CS206 Why it works (without recursion fairy)

We prove that print_base_8 is correct by induction
on k, the number of digits of n in base 8.

Base Case: If k = 1, then n < 8, and print_base_8

prints one digit correctly.

Inductive Step: Let k > 1, so n ≥ 8. We make the
inductive assumption that print_base_8 works
correctly for numbers with less than k digits. If we
call print_base_8(n), then it recursively calls
print_base_8(n//8). But n//8 has k − 1 digits in
base 8, so this works correctly. Finally, the last digit
is printed. It follows that print_base_8 prints n
correctly.



CS206 For arbitrary base

DIGITS = "0123456789abcdef"

MAX_BASE = len(DIGITS)

# Precondition: n >= 0, 2 <= base <= 16

def print_rec(n, base):

if n >= base:

print_rec(n // base, base)

digit = n % base

print(digits[digit], end="")

CS206 The Recursion Fairy

We solve problems by splitting them into simpler subproblems.
Then we can hand off each subproblem to a helper.

Recursion happens when the subproblem is exactly the same as
the original problem, only smaller (or in some way “easier.”)

We can still imagine handing off the subproblem to a
helper—the Recursion Fairy. She will “magically” solve the
subproblem for us. How she does this is none of our business.

Our task is only to simplify the problem into smaller
subproblems, or to solve it directly when simplification is not
possible or not necessary.

CS206 Factorial

Factorial: n! is n× (n− 1)!.

# Compute n!

def factorial(n):

if n <= 1:

return 1

else:

return n * factorial(n-1)

CS206 Mistakes

Why doesn’t this work?

def factorial(n):

return n * factorial(n - 1)

And this one?

def factorial(n):

if n <= 1:

return 1

else:

return n * factorial(n)

}



CS206 Correctness of recursive methods

There has to be a base case.

And we need to be sure that we will reach the base
case eventually—there has to be some progress in
each recursive call.

The Recursion Fairy takes care of the simpler
subproblems.

In other words, the version given to the Recursion
Fairy has to be easier than the original problem.

Do you know the formal name of the recursion fairy?

She is the induction hypothesis in mathematical
induction.

CS206 Recursive drawings

Ruler

Fractal star H-tree

CS206 A recursive definition: trees

A tree consists of a root and zero or more subtrees,
each of whose roots are connected to the root.

root

Each edge goes from the parent to the child.

CS206 Too much recursion

The Fibonacci numbers F0, F1, F2, . . . are defined as follows:
F0 = 0, F1 = 1, and Fi = Fi−1 + Fi−2 for i > 1.

def fib(n):

if n == 0:

return 0

elif n == 1:

return 1

else:

return fib(n - 1) + fib(n - 2)

Recursion is not useful when recursive calls duplicate work.
Don’t solve the same subproblem in separate recursive calls.



CS206 Towers of Hanoi
Three poles, n discs.

One move: take the top disc from one pole and move it to
another pole.

A B C

Goal: Move all discs from pole A to pole B.

CS206 Indirect recursion

All the previous examples are examples of direct recursion: A
function calls itself.

Indirect recursion happens when there are two (or more)
functions f and g, such that f calls g and g calls f.

If you want to understand indirect recursion in more detail,
please see the next slide.

CS206 Indirect recursion

For an explanation of indirect recursion, please see the previous
slide.

Sine and cosine can be computed using the following identities:

sinx = 2 sin
x

2
cos

x

2

cosx = 1− 2(sin
x
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)2

Your computer uses indirectly recursive methods sin(x) and
cos(x) that compute sinx and cosx using these identities.
The base case occurs when x is so small that a direct
approximation is possible.


