
CS206 Merge-Sort

Let us try divide and conquer:
1. Split the problem into smaller instances.
2. Recursively solve the subproblems.
3. Combine the solutions to solve the original problem.

def merge_sort(a):

if len(a) <= 1:

return a

mid = len(a) // 2

return merge(merge_sort(a[:mid]),

merge_sort(a[mid:]))

CS206 Merging

We are given two sorted lists a and b, and we wish to combine
them into one sorted list.

def merge(a, b):

i = 0; j = 0

res = []

while i < len(a) and j < len(b):

va = a[i]

vb = b[j]

if va <= vb:

res.append(va)

i += 1

else:

res.append(vb)

j += 1

res.extend(a[i:])

res.extend(b[j:])

return res

CS206 Merge-Sort — Time Analysis

Merging takes O(n) time.

Let T (n) be the time taken by Merge-Sort for n elements.
Then T (1) = O(1) and

T (n) = 2T (n/2) +O(n)

The solution is O(n log n).

CS206 Quick-sort

Divide and conquer:
1. Split the problem into smaller instances.
2. Recursively solve the subproblems.
3. Combine the solutions to solve the original problem.

In Merge-Sort, the divide step is trivial, and the combine step
is where all the work is done.

In Quick-Sort, the combine step is trivial, and all the work is
done in the divide step:
1. If L has less than two elements, return. Otherwise, select a

pivot p from L. Split L into three lists S, E, and G, where
• S stores the elements of L smaller than x,
• E stores the elements of L equal to x, and
• G stores the elements of L greater than x.

2. Recursively sort S and G.
3. Form result by concatenating S, E, and G in this order.



CS206 Quick-Sort

def quick_sort(a):

if len(a) <= 1:

return a

pivot = a[len(a) // 2]

small = []

equal = []

large = []

for x in a:

if x < pivot:

small.append(x)

elif x == pivot:

equal.append(x)

else:

large.append(x)

return (quick_sort(small) + equal +

quick_sort(large))

CS206 Quick-Sort Analysis

The running time depends strongly on the choice of the pivot.

In the worst case, it is O(n2).

In the best case, it is O(n log n).

If the pivot is selected randomly, the expected running time is
O(n log n).

Quick-Sort can be implemented in-place (using one array only).


