
CS206 Tokenizing and Parsing

Let’s program a calculator:

Welcome to KAIST SuperCalculator!

> 3 * (5 + 7 * 2) + 30 * 2 / 15

==> 61

> 110 - (23 + 12) * (15 - 12)

==> 5

CS206 Tokenization (Lexical Analysis)

(abc12+27 * 23.0(12abc34

Symbol: (

Identifier: abc12

Symbol: +

Number: 27.0
Symbol: *

Number: 23.0
Symbol: (

Number: 12.0
Identifier: abc34

Stop.

Note: Tokenizer knows nothing about
the syntax of expressions or the
programming language.

Tokenization means to partition the input string or text file
into tokens (smallest meaningful units) such as numbers,
identifiers, and operators.

Whitespace (spaces, line feeds, tabs) is
already removed by tokenization.

CS206 Tokens

We need four kinds of tokens:
• Number constants, such as 12 or 34.56;
• Variable names (“identifiers”), such as abc12;
• Operators (usually one-letter), such as +, *, or (;
• a stop token (end of input).

We use the following rules:
• Whitespace is skipped;
• A number is a string of digits with possibly a decimal point;
• an identifier starts with a letter or ’ ’, and consists of

letters, digits, and underscores;
• anything else is a one-letter symbol token.

CS206 Recursive descent parsing

An expression is a sum (with + or -) of terms.
A term is a product (with * or /) of items.
An item is either a number, or a variable name, or an
expression enclosed in parentheses.

For each syntactical element (that is, “expression”, “term”,
and “item”) we write a method to parse it.

Since parse_expression calls parse_term, parse_term
calls parse_item, and parse_item may call
parse_expression, recursive descent parsing automatically
leads to indirect recursion.


