KAIST €5206 Tokenizing and Parsing

Let's program a calculator:

Welcome to KAIST SuperCalculator!
>3 % (5+7%2) +30 %2/ 15

==> 61

> 110 - (23 + 12) * (15 - 12)
==> 5

KAIST €5206

Tokens

We need four kinds of tokens:
e Number constants, such as 12 or 34.56;
e Variable names (“identifiers”), such as abc12;
e Operators (usually one-letter), such as +, *, or (;
e a stop token (end of input).

We use the following rules:
e Whitespace is skipped;
e A number is a string of digits with possibly a decimal point;
e an identifier starts with a letter or '_', and consists of
letters, digits, and underscores;
e anything else is a one-letter symbol token.

KAIST CS206

Tokenization (Lexical Analysis)

Tokenization means to partition the input string or text file
into tokens (smallest meaningful units) such as numbers,
identifiers, and operators.

(abc12+27 * 23.0(12abc34

Symbol: (

Identifier: abc12

Symbol: + Whitespace (spaces, line feeds, tabs) is
Number: 27.0 already removed by tokenization.
Symbol: *

Number: 23.0

Symbol: (Note: Tokenizer knows nothing about
Number: 12.0 the syntax of expressions or the
|dentifier: abc34 programming language.

Stop.

KAIST C5206

Recursive descent parsing

An expression is a sum (with + or =) of terms.

A term is a product (with * or /) of items.

An item is either a number, or a variable name, or an
expression enclosed in parentheses.

For each syntactical element (that is, “expression”, “term”,
and “item") we write a method to parse it.

Since parse_expression calls parse_term, parse_term
calls parse_item, and parse_item may call
parse_expression, recursive descent parsing automatically
leads to indirect recursion.

