
CS206 How efficient are binary search trees?

Binary search tree operations take time O(h), where h is the
height of the tree.

But what is the height of a binary search tree for n elements?

It depends on the insertion order!

In the best case O(log n). (Perfect binary tree)

In the worst case O(n) (the tree is really a linked list).

If the insertions are in random order, then the expected height
of the tree is O(log n).

CS206 Balanced search trees

Balancing a tree means to keep the left and right subtree of
every node of roughly “equal” size.

There are many kinds of balanced search trees:

• Height-balanced trees (AVL-trees), (Adelson-Velsky and
Landis, 1962);

• Weight-balanced trees (Nievergelt and Reingold, 1973);
• (a, b)-trees (Bayer and McCreight 1972);
• Red-black trees (Guibas and Sedgewick 1978);
• Splay-trees (Sleator and Tarjan 1985).

CS206 AVL-Trees

An AVL-tree is a binary search tree with an additional balance
property: For every node of the tree, the height of the left
subtree and the right subtree differ by at most one.
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CS206 AVL-Trees have logarithmic height

We have N(0) = 1, N(1) = 2, N(2) = 4, and
N(h) ≥ N(h− 1) +N(h− 2) + 1.
So N(h) ≥ 2N(h− 2), and induction gives us N(h) ≥ 2dh/2e.

And therefore an AVL-tree with n nodes has height at
most 2 log n.

We ask the opposite question: For a given height h, what is
the smallest number N(h) of nodes an AVL-tree can have?

A more careful analysis shows that N(h) = Fh+3 − 1, and
using the known formula for the Fibonacci numbers, we get
the better bound h ≤ 1.44 log(n+ 2).



CS206 Maintaining balance

We have to maintain the balancing condition when we insert or
remove nodes in the tree.

Consider the insertion/deletion of a node w.

Heights change only on the path from the root to w.

Let z be the lowest ancestor of w that is now unbalanced. Let
y be its child of larger height, and x the child of y of larger
height (outer child in case of equal height).

We restructure the subtree rooted at z, by moving x, y, and z
and their subtrees.

There are four cases.

CS206 The four cases of restructuring
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CS206 Single Rotation
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The new subtree at y is balanced since

h(T0)− 1 ≤ h(T3) ≤ h(T0) = h(T2) ≤ h(T1) ≤ h(T0) + 1

CS206 Single Rotation
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CS206 Double rotation
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h(T0) = h(T1) = h(T3)
h(T1)− 1 ≤ h(T2) ≤ h(T1)

CS206 Double rotation
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