
CS206 How efficient are binary search trees?

Binary search tree operations take time O(h), where h is the
height of the tree.

But what is the height of a binary search tree for n elements?

It depends on the insertion order!

In the best case O(log n). (Perfect binary tree)

In the worst case O(n) (the tree is really a linked list).

If the insertions are in random order, then the expected height
of the tree is O(log n).

CS206 Balanced search trees

Balancing a tree means to keep the left and right subtree of
every node of roughly “equal” size.

There are many kinds of balanced search trees:

• Height-balanced trees (AVL-trees), (Adelson-Velsky and
Landis, 1962);

• Weight-balanced trees (Nievergelt and Reingold, 1973);
• (a, b)-trees (Bayer and McCreight 1972);
• Red-black trees (Guibas and Sedgewick 1978);
• Splay-trees (Sleator and Tarjan 1985).

CS206 AVL-Trees

An AVL-tree is a binary search tree with an additional balance
property: For every node of the tree, the height of the left
subtree and the right subtree differ by at most one.

12

168

4

2 6

10 14

16

4

2 6

10 14

1AVL-Tree
Not an AVL-Tree

12

8

CS206 AVL-Trees have logarithmic height

We have N(0) = 1, N(1) = 2, N(2) = 4, and
N(h) ≥ N(h− 1) +N(h− 2) + 1.
So N(h) ≥ 2N(h− 2), and induction gives us N(h) ≥ 2dh/2e.

And therefore an AVL-tree with n nodes has height at
most 2 log n.

We ask the opposite question: For a given height h, what is
the smallest number N(h) of nodes an AVL-tree can have?

A more careful analysis shows that N(h) = Fh+3 − 1, and
using the known formula for the Fibonacci numbers, we get
the better bound h ≤ 1.44 log(n+ 2).



CS206 Maintaining balance

We have to maintain the balancing condition when we insert or
remove nodes in the tree.

Consider the insertion/deletion of a node w.

Heights change only on the path from the root to w.

Let z be the lowest ancestor of w that is now unbalanced. Let
y be its child of larger height, and x the child of y of larger
height (outer child in case of equal height).

We restructure the subtree rooted at z, by moving x, y, and z
and their subtrees.

There are four cases.

CS206 The four cases of restructuring

z
y

x

T3

T2

T1

T0

z

T3

T0

T2

T1

y

x

z
y

x

T0

T1

T2

T3

z

T0

T3

T1

T2

y

x

CS206 Single Rotation

z
y

x

T0 T1 T2

T3

z
y

x

T0

T1

T2

T3

Left rotation

The new subtree at y is balanced since

h(T0)− 1 ≤ h(T3) ≤ h(T0) = h(T2) ≤ h(T1) ≤ h(T0) + 1

CS206 Single Rotation

16

4

2 6

10 14

1

12

8 16

14

12

z

y

x 10

4

82

1 6



CS206 Double rotation

z

T0

T3

T1 T2

y

x

Right rotation around y

z

T0 T3T1

T2

y

x

Left rotation around z

z

T0

T3

T1

T2

y

x

h(T0) = h(T1) = h(T3)
h(T1)− 1 ≤ h(T2) ≤ h(T1)

CS206 Double rotation

16

4

2 6

10 14

12

8

5

z

y

x

16

14

12

8

2 5 10

6

4


