
CS206 Algorithms and Algorithm Analysis

Algorithm: A clearly specified set of instructions the computer
will follow to solve a problem.

Given an algorithm, we want to determine the amount of
memory it uses, and how much time it requires to solve a
problem.

CS206 Etymology of “Algorithm”

Algorism = process of doing arithmetic using Arabic numerals.

A misperception: algiros [painful] + arithmos [number].

True origin: Abū ’Abdallāh Muhammad ibn Mūsā
al-Khwārizm̄ı was a 9th-century Persian mathematician,
astronomer, and geographer, who wrote Kitab al-jabr
wa’l-muqabala (Rules of restoring and equating), which
evolved into today’s high school mathematics text.

CS206 Maximum contiguous subsequence sum

Given an array with integers a1, a2, . . . , an, find the maximum
value of

∑j
k=i ak.

4, -3, 5, -2, -1, 2, 6, -2

How many possible subsequences are there?

CS206 The naive algorithm

maxSum = 0

for i in range(len(a)):

for j in range(i, len(a)):

sum = 0

for k in range(i, j+1):

sum += a[k]

if sum > maxSum:

maxSum = sum

Number of additions:
n−1∑
i=0

n−1∑
j=i

(j − i+ 1)



CS206 A faster algorithm

maxSum = 0

for i in range(len(a)):

sum = 0

for j in range(i, len(a)):

sum += a[j]

if sum > maxSum:

maxSum = sum

Number of additions:
n−1∑
i=0

(n− i)

CS206 A recursive algorithm

Split the array in the middle.
(1) The maximal subsequence is in the left half.
(2) The maximal subsequence is in the right half.
(3) The maximal subsequence begins in the left half and ends

in the right half.

How can we apply recursion to this problem?

4, -3, 5, -2, -1, 2, 6, -2

How many additions?

CS206 Divide and Conquer (Divide et impera)

• Split the problem into subproblems.
• Solve the subproblems recursively.
• Combine the solutions to the subproblems.

CS206 Experimental analysis of algorithms

n Naive Faster Recursive
10 2 1 1

100 760 31 19
1,000 652,285 2,411 236

10,000 – 218,210 2,378
100,000 – 23,033,000 25,037

1,000,000 – – 260,375

• Write a program implementing the algorithm
• Run the program with inputs of varying size and

composition
• Use a method like time.perf_counter() to get a

measure of the actual running time



CS206 Experimental analysis of algorithms

• It is necessary to implement the algorithm, which may be
difficult.

• Results may not be indicative of the running time on other
inputs not included in the experiment.

• In order to compare two algorithms, the same hardware and
software environments must be used. Programming
language, programming style, fine tuning should not be
measured.

Limitations:

CS206 Theoretical analysis

• Uses a high-level description of the algorithm instead of an
implementation

• Characterizes running time as a function of the input size n
• Takes into account all possible inputs, and looks at

worst-case
• Allows us to evaluate the speed of an algorithm

independent of the hardware/software environment

Theoretical analysis counts primitive operations.

Primitive operations are:
• Assigning a value to a variable
• Calling a method
• Arithmetic operations (e.g. adding two numbers)
• Indexing into an array
• Following a reference
• Returning from a method

CS206 Counting primitive operations

While we do not know the exact cost of a primitive operation
(it depends on the processor speed, processor architecture,
programming language, compiler, etc.), we know that all
primitive operations take constant time.

There is a fixed, finite number of primitive operations.
Let a be the time taken by the fastest primitive operation, let b
be the time taken by the slowest primitive operation.
If our algorithm uses k primitive operations, then its running
time T (n) is bounded by

ak ≤ T (n) ≤ bk

CS206 Simplifying the analysis

We are more interested in the growth rate of the running time
than in the exact formula. A quadratic algorithm will always
be faster than a cubic algorithm if the input size is sufficiently
large.

The growth rate determines the scaling behavior of an
algorithm: If we increase the problem size by a factor 10, how
much does the running time increase?

Time complexity Problem size after speedup
n 10s
n2 3.16s
n3 2.15s
2n s+ 3.3

Or, put differently: If we buy a computer that is ten times
faster, how much larger problems can we solve?



CS206 Big-Oh notation

Since we only want to know the growth rate of an algorithm,
we can simplify the analysis using Big-Oh notation.

Definition of Big-Oh:
Let f(n), g(n) be functions from {1, 2, 3, 4, . . .} to R.
We say that f(n) is O(g(n)) if there is a real constant c > 0
and an integer n0 ≥ 1 such that

f(n) ≤ cg(n) for n ≥ n0.

4n+ 1 is O(n)

2n2 + 3n+ 5 is not O(n)

2n2 + 3n+ 5 is O(n2)

CS206 Simplest terms

We want to express the running time in the simplest possible
Big-Oh notation.

4n log n+ 3n− 12 is O(n log n+ 3n) is correct,
but we should say that it is O(n log n).

Any polynomial

f(n) = a0 + a1n+ a2n
2 + a3n

3 + · · ·+ adn
d

with ad > 0 is just O(nd).

5n2 + 3n log n+ 2n+ 5 is O(n2)
20n3 + 10n log n+ 5 is O(n3)
3 log n+ 2 is O(log n)
2n+2 is O(2n)
2n+ 100 log n is O(n)

CS206 Asymptotic analysis

The asymptotic analysis of an algorithm determines the
running time in big-Oh notation.
To perform the asymptotic analysis
• We find the worst-case number of primitive operations

executed as a function of the input size
• We express this function with big-Oh notation

Since constant factors and lower- order terms are eventually
dropped anyhow, we can disregard them when counting
primitive operations

A word of caution:
What is better, 10100n, n100, or 2n?

CS206 Keeping your perspective

• Throughout the course of an analysis, keep in mind that
you are interested only in significant differences in efficiency

• When choosing an ADT implementation, consider how
frequently particular ADT operations occur in a given
application

• Some seldom-used but critical operations must be efficient
• If the problem size is always small, you can probably ignore

an algorithm’s efficiency
• Weigh the trade-offs between an algorithm’s time

requirements and its memory requirements


