The Rank Tree

A rank tree is a data structure that stores a sequence of elements, indexed from 0 to n — 1, and that supports
the following operations:

e Construct a rank tree from an array with n elements;
e find(k) returns the item at rank (index) k;

e remove (k) removes the item at rank k;

e len returns the current size (number of elements).

The rank tree stores the elements in a binary tree, one element per node. The indexed sequence is the
in-order sequence of this tree. A node v also stores the size of its subtree, that is, the number of nodes in
the subtree whose root is v. The Node class looks like this:

class _Node(Q):
def __init__(self, element, size=1, left=None, right=None):
self.element = element
self.size = size
self.left = left

self.right = right
def recompute_size(self):
ls = self.left.size if self.left else O

rs = self.right.size if self.right else O
self.size = 1s + 1 + rs

Its recompute_size () method updates the size field based on the size fields of the children.
Fig. 1 shows a rank tree storing the sequence 1,2,3,...,12. The red numbers are the size field of each

node.

Figure 1: Black numbers are elements, red numbers indicate the size field of each node.

Size method. The rank tree’s __len__
of the root note. Its running time is O(1):

method can be implemented easily: it just returns the size field

def __len__(self):
return self._root.size if self._root else O



Find method. The find(k) method follows a path starting at the root and ending at the node with
index k. We implement this method recursively, using the method _find (k) of the Node class. It returns
the node at index k inside the subtree with root self (so the indexing starts with the leftmost leaf of this
subtree).

In in-order ordering, the index of the root node is equal to the size of its left subtree. Soifk == left.size,
the node we are looking for is the root itself. If k < left.size, the node we are looking for must be in the
left subtree, where it is again at index k. In the last case, the node we are looking for is in the right subtree,
and its index in the right subtree is k - left.size - 1, because all the elements of the left subtree and
the root itself appear first in the sequence.

def _find(self, k):
1ls = self.left.size if self.left else O
if k < 1s:
return self.left._find(k)
elif k == 1s:
return self
else:
return self.right._find(k - 1s - 1)

Figure 2: To execute £ind (9), we visit the dark nodes, and check the lightly shaded nodes to obtain the
size of the left subtree.

The running time of this method is clearly O(h), where h is the height of the tree. (Recall that the height
of a tree is the length of the longest path from the root to a leaf.)

Remove method. Let v be the node at index k. We distinguish three cases:

If v is a leaf, then we can remove it easily: We set the link from its parent to None. Fig. 3(a) shows the
result of remove(7) on the tree of Fig. 2.

If v has one child, then we can replace the link from v’s parent to v by a link from the parent to v’s
child. Fig. 3(b) shows the result of remove(3) on the previous tree. The link from element 3 to 4 has been
replaced by a direct link from 3 to 5.

Finally, the hardest case is when v has two children. In this case we cannot remove the node v without
seriously changing the structure of the tree. So we use a little trick: Instead of removing the node v at
rank k, we remove the node u at rank £+ 1. So instead of deleting the element at index k from the sequence,
we first swap it with the element to its right, and then delete the element at index k + 1.



) After deleting the node with rank 7 ) After deleting the node with rank 3

(c) After deleting the node with rank 6

Figure 3: Delete a node with given rank k

The good news is that the node u at rank k + 1 is always the leftmost node in the right subtree of v.
Since u is the leftmost node, it cannot have a left child. As a result the node u can be removed from the
tree easily using one of the methods above.

To summarize: To remove v, we find the leftmost node u in v’s right subtree, we transfer the element
from node u to node v, and then we remove node u from the tree.

Consider, for instance, executing remove(6) on the tree of Fig. 3(b). The node v with rank 6 is the
node containing the element 9. We instead find the leftmost node u of its right subtree—that is the node u
containing the element 10. We transfer the element 10 into node v, and then remove node u, resulting in
the tree of Fig. 3(c).

Removing a node will make some of the size fields in the tree invalid. More precisely, the size fields of
all nodes that are ancestors of the deleted node have to be recomputed. We achieve this using recursion.

The running time of remove (k) is clearly O(h), since it follows a path from the root to v, and then
possibly further down to u. The total length of this path cannot be larger than h.

Rank tree construction. Finally, we need to show how to construct the initial rank tree. The constructor
of RankTree should immediately build the tree from a given array:



class RankTree():
def init__(self, a):

self._root = self._build_tree(a, 0, len(a) - 1)

We want the tree to be nicely balanced, so we need the left and right subtree of the root to be roughly
equal in size. This immediately give us an algorithm for _build_tree: For a sequence with zero elements,
we create an empty tree. Otherwise, we pick the element with the middle index and put it in the root. Then
we recursively build a rank tree for the left half of the sequence, and for the right half of the sequence. These
trees become the children of the root node:

def _build_tree(self, a, lo, hi):
if hi < lo:
return None
elif lo == hi:
return _Node(al[lol)

else:
mid = (1o + hi) // 2
lhs = self._build_tree(a, lo, mid - 1)
rhs = self._build_tree(a, mid + 1, hi)

t = _Node(al[mid], 1, 1lhs, rhs)
t.recompute_size()
return t

The running time of this procedure is O(n). The easiest way to see this is to observe that _build_tree
spends constant time if we do not count the recursive calls. We can “charge” this constant time to the
element at rank mid. No element is charged twice, so the total running time is O(n).

Alternatively, we can write the running time 7'(n) of _build_tree for a sequence of length n using the
recursive formula T'(n) = 2T'(n/2) + O(1). The solution of this formula is again O(n).

It remains to observe that the construction step builds a perfectly balanced tree of height [log(n + 1)]—1.
Since our rank tree does not have an insertion method, the height of the tree can never increase. As a result,
we always have h = O(logn).

Analysis. We found the following running times (where h is the height of the tree):

Constructing the tree: O(n)
find(k): O(h) = O(logn)
remove (k): O(h) = O(logn)
size(): O(1)

We will later see how to add insertions to this tree that are also guaranteed to be done in time O(logn).



