
Objects

Every piece of data created and used by a Python program is called an object. There are simple objects
such as numbers (both integers and floating point numbers) and Booleans (True and False), standard
objects such as strings, lists, and tuples, and objects defined in special libraries or by the user, such as
images, the canvas from the cs206draw module, or the robot objects from CS101.

An objects stores some information—we call this the object’s state. For instance, the state of a
number object is the value of the number, the state of a string is the letters making up the string, and
the state of a list is the length and the contents of the list.

In addition, objects provide methods to access the object’s state, or to manipulate the state (that is, to
change the information stored by the object). In Python, many methods are called using special syntax:
for instance, len(s) really calls the method s.__length__, a + b calls the method a.__add__(b), and
a in b calls the method b.__contains__(a).

Every object has a specific type. The type determines what you can do with the object, in particular,
what methods it supports. For instance, you can write a in b when b is a list, but not when b is a num-
ber. Similar, the expression a + b means addition when a and b are numbers, but means concatenation
when a and b are strings.

We have already used quite a few object types that are either built into the Python language, or that
are provided by some library. In the future, we also want to create our own types. This is done using the
class keyword. A class is a blueprint for objects—you create objects from the blueprint by just writing
the class name.

Variables and the Heap

All objects are stored in a storage area of the Python interpreter called the heap.
A variable is really just a name for an object. So a variable does not “contain” a value, it is just a

reference to an object. We will say that the variable references or links to this object.
The same object can have multiple names (that is, several variables “reference” the same object at

the same time). The meaning of a name can change during the course of a program. This is really what
an assignment instruction does: it makes the variable reference another object.

A name may also be unused. In that case we say that the variable has value None. You can test
whether a variable a is unused by writing a is None, or using the negated form a is not None. (Note
that this is a bit shorter and easier to read than the normal negated form not (a is None).)

Mutable and immutable objects

Some objects cannot change their state once the object has been created. We call such objects immutable.
For instance, the number types are immutable: Once you create an object for the number 3, for

instance, this object will always store the number 3—it can never change its value. Students often find
this confusing, because you can write something like this:

a = 3

a = 5

But note that in the second line we do not change the value of the object with value 3 created in the first
line: Instead, we create a new object with value 5, and change the variable a to link to the new object.

Strings are also immutable in Python: Once you have created a string object, you cannot change
its value by replacing some letters or so. Any string method that seems to change the string actually
returns a new string object. For instance

>>> s = "Hello CS109"

>>> t = s.upper()

>>> s

’Hello CS109’

Note that s remained unchanged by the call to the upper() method—it returns a new string object.
Tuples are another immutable type. Once you created a tuple, you cannot update its components.
Finally, there is a special immutable kind of set object called frozenset. We will see what it is good

for later:

1

>>> s1 = set([1, 2, 3])

>>> s2 = frozenset([1, 2, 3])

>>> s1.add(9)

>>> s1

{1, 2, 3, 9}

>>> s2.add(9)

AttributeError: ’frozenset’ object has no attribute ’add’

Most Python objects are mutable, meaning that their state can be changed after the object has been
created. This can lead to “interesting” behavior such as the following:

>>> A = [1, 2, 3, 4]

>>> B = A

>>> A

[1, 2, 3, 4]

>>> B

[1, 2, 3, 4]

>>> A[2] = 99

>>> A

[1, 2, 99, 4]

>>> B

[1, 2, 99, 4]

We modified the contents of the list A — but then, when we look at the list B, we observe that its contents
has also changed. What happened?

The answer, of course, is that there is only one list object. Both A and B are names for the same
object, or, put differently, the two variables A and B reference the same list object.

We have to be careful when working with mutable objects that end up having multiple names. For
this reason, immutable objects are generally preferred, except where efficiency is a problem. Today, with
multi-core computers where several CPUs access the same data at the same time, immutable object
designs become more and more important.

Local variables

As we discussed earlier, all objects are stored on the heap—no object can live anywhere else. Variables
store just references to the objects inside the heap, they do not actually contain a value.

So where are these references stored? Some references are inside objects. Consider, for instance, this
example:

a = ["Hello CS206", 13]

Here a is the name for a list object. Inside the list object are references to two other objects, a string
and an integer.

But what about the variable names used in your program? Consider this little function:

def test(m):

k = m + 27

s = "Hello World"

A = [len(s), k, m]

This function has four local variables: m, k, s, and A. Yes, you read that correctly: the parameter m is
also a local variable. Parameters are different from other local variables only through the fact that they
are given a value from arguments when the function is called.

Every time the function test is called, the Python interpreter creates a special memory area called
an activation record (because the function is being activated) or stack frame (we’ll get back to this name
later). All local variables are stored inside the stack frame. When the function returns, the stack frame
is destroyed, and the local variables no longer exist.

Now that we have covered local variables, you may wonder where global variables are stored. There
actually is an object for every Python module of your program, and this object stores the global variables
(so, in a sense, global variables are like fields in an object).

2

Garbage collection

A typical program creates many small objects that are only used for a brief time, and not needed
afterwards. This results in the heap filling up with unused objects, and at some point the heap is simply
full and cannot store any new objects.

At this point, the Python interpreter needs to perform garbage collection. It inspects each and every
object on the heap and determines whether the object is garbage—that is, the object can no longer be
used. Those garbage objects are discarded, and the program can continue.

How can the interpreter know whether an object is still useful? Well, to be useful, an object needs
to have a name: there needs to be a variable (or field in another object) that references it. So the
Python interpreter starts from all the global variables and all the active local variables, and follows
those references to find every object that is still reachable. All objects not found during this process are
garbage.

If you have programmed in C or C++ before, you have learnt that for every object that you allocate
(with malloc or new), you have to free the memory later (with free or delete). C and C++ do not
have garbage collection, so the programmer is responsible for managing the heap. The result is that C

and C++ programs often have memory leaks: Some objects are created, but never destroyed, so the heap
slowly fills up with unused objects, and the program uses more and more of your computer’s memory.
In Python, Java, Kotlin, and other languages with garbage collection we do not have to worry about
memory leaks.

Modern garbage collectors are more sophisticated than the scheme described above—they may store
some bookkeeping information with each object to figure out quickly when it becomes garbage (and then
discard it immediately). They may also perform some garbage collection incrementally, in parallel with
the computation. Efficient garbage collection is an active research area.

Defining classes

We will study how to define a class using the Token class from our calculator. Here is the class definition:

class Token(object):

def __init__(self, text, pos, type):

self.pos = pos

self.type = type

if type == "number":

self.value = float(text)

else:

self.value = text

The keyword class is followed by the name of the class, by convention starting with a capital letter.
In parenthesis follows the name of the “superclass”—in this course, we will nearly always write object

here to indicate that there is no specific superclass. You’ll learn about superclasses, subclasses, and class
hierarchies when you study object-oriented programming.

The keyword def inside a class starts a method definition. Here, we have one method with the special,
magic name __init__. This method is the constructor of the Token class—it is executed every time an
object of type Token is created. It’s duty is to initialize the state of the object correctly.

Our token objects are very simple: they just store the type of the token (as a string, namely one of
the values “number”, “identifier”, “symbol”, or “stop”), the token’s value (either a numeric value for
number tokens, or a string for identifier and symbol tokens), and finally the position in the input string
where the token starts (this is only used for reporting errors).

The constructor takes three parameters for these pieces of information, and stores them in the fields
type, value, and pos of the Token object. But note that the constructor method actually has four
parameters. The first parameter, which is always called self, refers to the Token object that is being
created. Therefore assigning to self.type creates the type field inside the object, and similar for
self.value and self.pos.

With this code we can start creating Token objects, like this:

>>> t = Token("3.5", 7, "number")

>>> t.type

3

’number’

>>> t.value

3.5

>>> h = Token("*", 12, "symbol")

>>> h.type

’symbol’

>>> h.value

’*’

Note that once the object has been set up by the constructor, we can access the fields containing its
state.

Defining methods

Even though Token is a simple class, it will be useful to give it a few methods to make our parsing code
more readable. For instance, instead of t.type == "number", we want to write t.isNumber(), and
instead of

t.type == "symbol" and t.value == "*"

we want to write t.isSymbol("*"). Here are the method definitions. Again they go inside the class
definition:

def isNumber(self):

return self.type == "number"

def isSymbol(self, s):

return self.type == "symbol" and self.value == s

def isIdentifier(self):

return self.type == "identifier"

def isStop(self):

return self.type == "stop"

Note that the first parameter of each method is again called self. When calling the method, this
parameter will reference the Token object itself. For instance, when we call t.isSymbol("*"), then
self will be the object t, and s will be the string "*".

Converting to strings

It is often useful to add methods to a class that will print the object in a nice format. Again there is a
magic method name, namely __str__. This method is called whenever objects are converted to strings
with the str function. This happens, for instance, when printing an object using the print function: it
automatically converts its argument to a string.

Here is the definition for the __str__ method of our Token class:

def __str__(self):

if self.isNumber():

return "Number: %g" % self.value

if self.isIdentifier():

return "Identifier: %s" % self.value

if self.isStop():

return "Stop"

return "Symbol: %s" % self.value

Again, self refers to the Token object. Here are some tests:

4

>>> str(h)

’Symbol: *’

>>> str(t)

’Number: 3.5’

>>> print(h)

Symbol: *

>>> print(t)

Number: 3.5

Note how print first converts the Token object to a string.
Python actually supports a second form of string conversion, using the magic method name __repr__.

This method is called using the repr function. It is also used by the interactive mode to display the
result of each line of input.

The __repr__ method is meant for debugging, it is used by the programmer for testing and in the
interactive mode, not in code meant for the “end user.” Therefore, the result often looks quite different.

>>> print(7)

7

>>> print(repr(7))

7

>>> print("hello")

hello

>>> print(repr("hello"))

’hello’

For numbers, there is no difference between the result of str and repr. For strings, however, we note
that the output of repr contains an extra pair of quotes. The difference becomes even more pronounced
if we include some special characters in the string (\t means a tab character, \n is a newline character):

>>> s = "Hello\tCS206!\n"

>>> print(s)

Hello CS206!

>>> print(repr(s))

’Hello\tCS206!\n’

When printing the string, the special characters are interpreted. The output of repr, however, contains
special characters. The effect is that we could take the output of repr and feed it back into the Python
interpreter to create a copy of the same string.

This is a general design principle for the repr conversion: its output often has a format that can be
copied back into the interpreter to create a copy of the object. Let’s use this design for our Token class:

def __repr__(self):

return "Token(%s, %d, %s)" % (repr(self.value), self.pos, repr(self.type))

Note that this works correctly both for number and string values:

>>> print(repr(t))

Token(3.5, 7, ’number’)

>>> print(repr(h))

Token(’*’, 12, ’symbol’)

You can copy this output back into the interpreter to recreate the Token object.
One good reason to define a repr conversion is that it allows you to look at lists of your objects:

>>> toks = tokenize("a23 * (3 - 4 * x)")

>>> toks

[Token(’a23’, 0, ’identifier’), Token(’*’, 4, ’symbol’),

Token(’(’, 6, ’symbol’), Token(3.0, 7, ’number’), Token(’-’, 9, ’symbol’),

Token(4.0, 11, ’number’), Token(’*’, 13, ’symbol’),

Token(’x’, 15, ’identifier’), Token(’)’, 16, ’symbol’),

Token(’’, 17, ’stop’)]

5

This works because the string conversion for list objects uses the repr conversion for each list element.

Object implementation and client code

Ideally, code that uses an object of a certain type should not need to know how that object is im-
plemented. For instance, we can use Python’s list objects without needing to know how the Python
interpreter implements them so efficiently. (But we’ll figure it out, I promise!)

It therefore often makes sense to separate the code that implements a class from the code that uses
the class. We usually have one file that contains the definitions for one class (or perhaps a few closely
related classes), and perhaps some functions that work with objects of this type. Such a file is called a
Python module.

The code that uses the object is called client code. Think about your class providing some kind of
service, the client code is a “customer” for this service—hence the name “client code”.

To use your class, client code must import the module defining the class. In our case, we need a line

import tokens

We can then use the Token class and the tokenize function by prefixing them with the module name:

>>> import tokens

>>> h = tokens.Token("3.5", 7, "number")

>>> toks = tokens.tokenize("3 * 5 - 7 / x")

Sometimes it’s annoying having to write the module name all the time. In that case we can import all
the classes and functions from the module into the client code’s name space, like this:

>>> from tokens import *

>>> h = Token("3.5", 7, "number")

>>> toks = tokenize("3 * 5 - 7 / x")

Object equality

The == operator can be used to test equality of any kind of object. However, by default it is not very
useful:

>>> h

Token(3.5, 7, ’number’)

>>> h1 = h

>>> h2 = Token("3.5", 7, "number")

>>> h2

Token(3.5, 7, ’number’)

>>> h == h1

True

>>> h == h2

False

Note that h == h1 is true, because h and h1 are actually the same object. However, h == h2 returns
false, even though the two objects have exactly the same state.

We can fix this by adding a method with another magic name to our Token class:

def __eq__(self, rhs):

return (self.type == rhs.type and

self.value == rhs.value)

Note that in this example we do not check the pos field, so two Token objects are considered equal
when type and value are identical.

6

