
Linked lists

When we discussed the implementation of stacks, we discovered that the only way to ensure constant time
for each operation without knowing in advance the size of the stack is to work with small node objects that
are linked together.

Let’s now generalize this idea and see how to implement a sequence with many useful operations like
insertions and deletions. This data structures is called a linked list. Some data structure books and some
libraries will simply call it “list,” but since Python already has a list data structure (which is not a linked
list), we will always explicitely say “linked list.”

Basic ideas

As in the stack implementation, we need a small node object that stores an element, and also links to another
node object:

class Node:

def __init__(self, el, next=None):

self.el = el

self.next = next

def __repr__(self):

return "<" + repr(self.el) + ">"

We have added a repr-method to help with debugging.
By creating nodes and linking them together, we can create a short linked list with three strings:

>>> a = Node("apples")

>>> a = Node("oranges", a)

>>> a = Node("strawberries", a)

>>> a

<’strawberries’>

>>> a.next

<’oranges’>

>>> a.next.next

<’apples’>

>>> a.next.next.next is None

True

Let’s write a function that will display all the elements of a list. One approach is to do it recursively:

def display(a):

if a is not None:

print(a.el)

display(a.next)

This is the output using the linked list we made above:

>>> display(a)

strawberries

oranges

apples

It is natural to use recursive functions to work with linked lists, since linked lists can be defined recursively:
a linked list is either empty (that is, None), or consists of a Node whose next field points to a linked list.

As usual with recursive functions, we have to worry about stack overflow. With this function, we wouldn’t
be able to display a linked list with more than 1000 elements—that’s not a lot.

Let’s solve the problem by rewriting the function using a loop, without recursion:

1



def display(a):

while a is not None:

print(a.el)

a = a.next

Note how the local variable a walks through the linked list while printing out its elements.

A LinkedList class

Let’s get more serious and make a class to manage a linked list:

class LinkedList:

def __init__(self):

self._front = None

def first(self):

if self._front is None:

raise EmptyListError

return self._front

def is_empty(self):

return self._front is None

def __repr__(self):

if self.is_empty():

return "[]"

res = "["

p = self._front

while p is not None:

res += repr(p.el)

if p.next is not None:

res += ", "

p = p.next

res += "]"

return res

The constructor creates an empty list. The LinkedList object stores only a reference to the first element
of the list, called the front. The first() method returns this front node. We have added a repr-conversion
method that walks through the linked list and builds a string representation.

Let’s now look at all the operations we will need:

prepend(el). This method adds a new node at the front of the list. We need to create a new Node object
storing the element. The next of this node should be the old linked list, while the new node becomes the
new front node. This results in the following one-liner:

def prepend(self, el):

self._front = Node(el, self._front)

remove first(). This method removes the front node, thus making the linked list one element shorter.
A first attempt gives another one-liner:

def remove_first(self):

self._front = self._front.next

2



However, we missed some error-handling here: if the list is empty, we should raise an EmptyListError. So
our final code is this:

def remove_first(self):

if self._front is None:

raise EmptyListError

self._front = self._front.next

insert after(n, el). This method inserts a new node into the linked list just after the given node n. Again,
we need to create a new node storing el. We will need to change n.next to point to this new node, while
the new node will point to the old n.next. This gives the following one-liner:

def insert_after(self, n, el):

n.next = Node(el, n.next)

Note that we need no special error handling here: this code will work correctly even if n is the last node of
the linked list.

remove after(n). This method deletes the node after node n from the linked list, making the list one
element shorter. Here, we need to check if n is the last node, and obtain the following code:

def remove_after(self, n):

if n.next is None:

raise ValueError(n)

n.next = n.next.next

before(n). This method returns the node just before the given node n. This is tricky: there is no way we
can go from n to the node before it, so the only way to do this is to start at the front of the list and walk
through the list until we find a node whose next field is equal to n.

def before(self, n):

p = self._front

while p.next != n:

p = p.next

return p

last(). This method returns the last node of the linked list. Again, there is no easy way to do this: we
must walk through the list to find the last node:

def last(self):

p = self._front

while p.next != null:

p = p.next

return p

Length of linked list. Similarly, to compute the length of a linked list, we must walk through the list
and count node objects. Here is the magic method that makes the Python function len work:

def __len__(self):

if self.is_empty():

return 0

p = self._front

count = 0

3



while p is not None:

count += 1

p = p.next

return count

Linked list with fast append

Most operations on linked lists take constant time, but appending at the end requires linear time: we have
to walk through the list to find the end before we can add a new node there.

If we want to support append in constant time, then the LinkedList object must store a reference to
the last node:

class LinkedList:

def __init__(self):

self._front = None

self._rear = None

Now, append is in principle fast (and easy):

def append(self, x):

if self._front is None:

self._front = _Node(x, None)

self._rear = self._front

else:

self._rear.next = _Node(x, None)

self._rear = self._rear.next

But we have to add quite a bit of code to our class to make sure that the _rear field is updated correctly
whenever we make a change to the list. For instance, prepend must also update _rear when the list was
empty.

Linked queues

A linked list with fast append directly provides all the operations we need for a queue. Example code
linkedqueue.py contains a full queue implementation with this technique. All operations work in constant
time.

4


